Skip to main content
Log in

The role of the water vapor continuum absorption in near ground long-wave radiation processes of the Lower Volga region

  • Optical Waves Propagation
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

Analytical formulas for the estimation of the sensitivity of downward long-wave radiative fluxes to variations in the total water vapor content in the atmospheric vertical column in the absorption bands and atmospheric transparency windows are derived. The regression dependence of the CO2 radiative forcing on the total water vapor content is calculated for the Lower Volga region. The role of the H2O continuum absorption is studied, and the CO2 radiative forcing is shown to strongly depend on the continuum magnitude. The atmospheric conditions are determined, under which the contribution of the H2O continuum due to the interaction of water vapor with air molecules to the downward radiative fluxes is maximal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Forster, V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D. W. Fahey, J. Haywood, J. Lean, D. C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schulz, and R. Van Dorland, “IPCC, 2007: Changes in atmospheric constituents and in radiative forcing” in Climate Change; 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, and H.L. Miller (Cambridge Univ., Cambridge, UK; USA, 2007).

    Google Scholar 

  2. I. M. Held and B. J. Soden, “Robust responses of the hydrological cycle to global warming,” J. Climate 19(21), 5686–5699 (2006).

    Article  ADS  Google Scholar 

  3. G. L. Stephens, M. Wild, P. W. Stackhouse, T. L. Ecuyer, S. Kato, and D. S. Henderson, “The global character of the flux of downward longwave radiation,” J. Climate 25(7), 2329–2340 (2012).

    Article  ADS  Google Scholar 

  4. B. D. Belan and G. M. Krekov, “The effect of anthropogenic factor on the content of greenhouse gases in the troposphere. 1. Methane,” Opt. Atmos. Okeana 25(4), 361–373 (2012).

    Google Scholar 

  5. K. P. Shine, I. V. Ptashnik, and G. Radel, “The water vapour continuum: Brief history and recent developments,” Surv. Geophys. 33(3–4), 535–555 (2012).

    Article  ADS  Google Scholar 

  6. Yu. I. Baranov, W. J. Lafferty, Q. Ma, and R. H. Tipping, “Water-vapor continuum absorption in the 800–1250 cm−1 spectral region at temperatures from 311 to 363 K,” J. Quant. Spectrosc. Radiat. Transfer 109(12–13), 2291–2302 (2008).

    Article  ADS  Google Scholar 

  7. Yu. I. Baranov and W. J. Lafferty, “The water vapour self- and water-nitrogen continuum absorption in the 1000 and 2500 cm−1 atmospheric windows,” Phil. Trans. Roy. Soc., A 370(1968), 2578–2589 (2012).

    Article  ADS  Google Scholar 

  8. T. Yu. Chesnokova, T. B. Zhuravleva, I. V. Ptashnik, and A. V. Chentsov, “Simulation of solar radiative fluxes in the atmosphere using different models of water vapor continuum absorption in typical conditions of Western Siberia,” Atmos. Ocean. Opt. 26(6), 499–506 (2013).

    Article  Google Scholar 

  9. I. V. Ptashnik, R. A. McPheat, K. P. Shine, K. M. Smith, and R. G. Williams, “Water vapor self-continuum absorption in near-infrared windows derived from laboratory measurements,” J. Geophys. Res. 116, D16305 (2011).

    Article  ADS  Google Scholar 

  10. I. V. Ptashnik, R. A. McPheat, K. P. Shine, K. M. Smith, and R. G. Williams, “Water vapour foreign continuum absorption in near-infrared windows from laboratory measurements,” Phil. Trans. Roy. Soc. 370(1968), 2557–2577 (2012).

    Article  ADS  Google Scholar 

  11. V. E. Zuev and V. S. Komarov, Statistical models of temperature and gaseous components of the atmosphere (Gidrometeoizdat, Leningrad, 1986) [in Russian].

    Google Scholar 

  12. G. Anderson, S. Clough, F. Kneizys, J. Chetwynd, and E. Shettle, AFGL-TR-86-0110, Environ. Res. Paper N 954 (Air Force Geophysics Laboratory).

  13. A. A. Mitsel’, K. M. Firsov, and B. A. Fomin, Transfer of Optical Radiation in a Molecular Atmosphere (STT, Tomsk, 2001) [in Russian].

    Google Scholar 

  14. R. Goody, R. West, L. Chen, and D. Crisp, “The correlated-k method for radiation calculations in nonhomogeneous atmospheres,” J. Quant. Spectrosc. Radiat. Transfer 42(6), 539–550 (1989).

    Article  ADS  Google Scholar 

  15. A. A. Lacis and V. Oinas, “A description of the K-distribution methods for modelling nongray gaseous absorption, thermal emission, and multiple scattering in vertically inhomogeneous atmospheres,” J. Geophys. Res., D 96(5), 9027–9063 (1991).

    Article  ADS  Google Scholar 

  16. K. M. Firsov and T. Yu. Chesnokova, “Influence of variations in the CH4 and N2O concentration on longwave radiative fluxes in the Earth’s atmosphere,” Atmos. Ocean. Opt. 12(9), 758–763 (1999).

    Google Scholar 

  17. L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L.H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and Auwera J. Vander, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110(9–10), 533–572 (2009).

    Article  ADS  Google Scholar 

  18. About the Environmental State in the Volgograd Region in 2009. Report of the Committee of Natural Resources and Environmental Protection of the Volgograd Region Authorities, Ed. by V.I. Novikov (Globus, Moscow, 2010) [in Russian].

    Google Scholar 

  19. V. N. Aref’ev, “Molecular absorption of radiation by water vapor in the window of relative transparency of the atmosphere 8–13 μm,” Opt. Atmos. Okeana 2(10), 1034–1054 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. M. Firsov.

Additional information

Original Russian Text © K.M. Firsov, T.Yu. Chesnokova, E.V. Bobrov, 2014, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Firsov, K.M., Chesnokova, T.Y. & Bobrov, E.V. The role of the water vapor continuum absorption in near ground long-wave radiation processes of the Lower Volga region. Atmos Ocean Opt 28, 1–8 (2015). https://doi.org/10.1134/S1024856015010030

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856015010030

Keywords

Navigation