Skip to main content
Log in

The Effect of Structure of Porous Components of Electrochemical Devices on Their Characteristics (A Review)

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Literature concerning the principal problems is analyzed. Basic characteristics of porous structures and methods of their determination are described, in particular, the pore distribution in radii, full porosity, the specific surface area, hydrophilic–hydrophobic properties. The effect of porous structure on the electrochemical characteristics of the following devices is discussed: lithium-ion and lithium-oxygen batteries, fuel cells with proton-exchange membrane, supercapacitors, electrodialyzers, and devices for water capacitive deionization (desalination).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.
Fig. 25.
Fig. 26.
Fig. 27.
Fig. 28.
Fig. 29.
Fig. 30.
Fig. 31.
Fig. 32.
Fig. 33.
Fig. 34.
Fig. 35.
Fig. 36.
Fig. 37.
Fig. 38.
Fig. 39.
Fig. 40.
Fig. 41.
Fig. 42.
Fig. 43.
Fig. 44.
Fig. 45.

Similar content being viewed by others

REFERENCES

  1. Rouquero l, J., Baron, G., Denoyel, R., et al., Liquid intrusion and alternative methods for the characterization of macroporous materials (IUPAC Technical Report), Pure Appl. Chem., 2012, vol. 84, p. 107.

    Article  CAS  Google Scholar 

  2. Drake, C., Pore-size distribution in porous materials, Ind. Eng. Chem., 1949, vol. 41, p. 780.

    Article  CAS  Google Scholar 

  3. Dubinin, M.M. and Plavnik, G.M., Microporous structures of carbonaceous adsorbents, Carbon, 1968, vol. 6, p. 183.

    Article  CAS  Google Scholar 

  4. Miklos, S. and Pohl, A., Application of centrifugal porosimetry, Bergakademie, 1970, vol. 22, p. 97.

    Google Scholar 

  5. Swata, M.J. and Jansta, I., Porosimetry, Czech. Chem. Comun., 1965, vol. 30, p. 2455.

    Google Scholar 

  6. Miller, B. and Tyomkin, I., Liquid porosimetry: new methodology and applications, J. Colloid Interface Sci., 1994, vol. 162, p. 163.

    Article  CAS  Google Scholar 

  7. Gregg, S.J. and Sing, K.S., Adsorption, Surface Area, and Porosity, Academic Press, 1991.

    Google Scholar 

  8. Watkins, D.S., Fuel Cell Systems, N.Y.: Plenum Press, 1993, 292 p.

    Google Scholar 

  9. Schlögl, R. and Schuring, H., Structural and wetting properties of fuel cell components, Z. Elektrochem., 1961, vol. 10, p. 863.

    Google Scholar 

  10. Tersoff, J. and Hamann, D.R., Theory of the scanning tunneling microscope, Phys. Rev., 1985, vol. 31, p. 805.

    Article  CAS  Google Scholar 

  11. Bardeen, J., Tunnelling from a many-particle point of view, Phys. Rev. Lett., 1961, vol. 6, p. 57.

    Article  CAS  Google Scholar 

  12. Dietz, P., Hansma, P.K., and Inacker, Surface pore structures of micro is the and ultrafiltration membranes imaged with the atomic force microscope, J. Membr. Sci., 1992, vol. 65, p. 101.

    Article  CAS  Google Scholar 

  13. Lavrenntyeva, E.K., Vassiliev, S.Y., Tsirlin, A.A., Polyakov, S.N., Leoni, M., Napolskii, K.S., Petrii, O.A., and Tsirlina, G.A., Smectite clays as the quasi-templates for platinum electrodeposition, Electrochim. Acta, 2012, vol. 61, p. 94.

    Article  Google Scholar 

  14. Zhu, Y., Murali, S., Stoller, M.D., and Ganesh, K.J., Carbon-Based Supercapacitors Produced by Activation of Graphene, Science, 2011, vol. 332, p. 1537.

    Article  CAS  PubMed  Google Scholar 

  15. Zhang, L., Zhang, F., and Yang, X., Porous 3D graphene-based bulk aterials with exceptional high surface area and excellent conductivity for supercapacitors, Sci. Rep., 2013, vol. 3, p. 1408.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Volfkovich, Yu.M., Sosenkin, V.E., Rychagov, A.Yu., Melezhik, A.V., Tkachev, A.G., Kabachkov, E.N., Korepanov, V.I., Khodos, I.I., Michtchenko, A., and Shulga, Yu.M., Carbon material with high specific surface area and high pseudocapacitance: Possible application in supercapacitors, Microporous Mesoporous Mater., 2021, vol. 319, 111063.

    Article  CAS  Google Scholar 

  17. Volfkovich, Yu.M., Bagotzky, V.S., Sosenkin, V.E., and Shkolnikov, E.I., Methods of Standard Porosimetry and their Applications in Electrochemistry and other fields, Russ. J. Electrochem., 1980, vol. 16, p. 1220.

    Google Scholar 

  18. Volfkovich, Yu.M., Bagotsky, V.S., Sosenkin, V.E., and Blinov, I.A., The standard contact porosimetry. Colloids Surfaces, A: Physicochem. Engng. Aspects, 2001, vol. 187–188, p. 349.

    Article  Google Scholar 

  19. Volfkovich, Yu.M., Filippov, A.N., and Bagotsky, V.S., Structural Properties of Porous Materials and Powders Used in Different Fields of Science and Technology, London: Springer, 2014.

    Book  Google Scholar 

  20. Volfkovich, Yu.M., Blinov, I.A., and Sakar, A., US Patent 7, 059, 175, 2006.

  21. Bograchev, D.A., Volfkovich, Yu.M., Sosenkin, V.E., Podgornova, O.A., and Kosova, N.V., The influence of porous structure on the electrochemical properties of LiFe0.5Mn0.5PO4 cathode material prepared by mechanocehmically assisted solid-state synthesis, Energies, 2020, vol. 13, p. 542.

    Article  CAS  Google Scholar 

  22. Volfkovich, Yu. M., Mikhalin, A.A., Rychagov, A.Yu., Sosenkin, V.E., and Bograchev, D.A., Activated Carbons as Nanoporous Electron-Ion-Exchangers, Russ. J. Electrochem., 2020, vol. 56, p. 869.

    Article  CAS  Google Scholar 

  23. Whittingham, M.S., Electrical Energy Storage and Intercalation Chemistry, Science, 1976, vol. 192, p. 1267.

    Article  Google Scholar 

  24. Sony's Lithium Manganese Rechargeable Battery (AA size), JEC Press, Inc., 1991.

  25. Doyle, M., Fuller, T., and Newman, J., Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell, J. Electrochem. Soc., 1993, vol. 140, p. 1526.

    Article  CAS  Google Scholar 

  26. Volfkovich, Yu.M., Petrii, O.A., Zaytzev, A.A., and Kovrigina, V., Regularities of macrokinetics of processes in porous hydrogen absorbent electrodes, Vestnik Mos. Gos. Univ., Ser. Chem. (in Russian) 2, 1988, vol. 29, p. 28.

  27. Volfkovich, Yu.M., Sergeev, A.G., Zolotova, T.K., Afanasiev, S.D., Efimov, O.N., and Krinichnaya, E.P., Macrokinetics of Polyaniline based Electrode: Effects of Porous Structure, Microkinetics, Diffusion, and Electrical Double Layer, Electrochim. Acta, 1999, vol. 44, p. 1543.

    Article  Google Scholar 

  28. Bird, R.B., Stewart, W.E., and Lightfoot, E.N., Transport Phenomena, Wiley, 1960.

    Google Scholar 

  29. Verbrugge, M.W. and Koch, B.J., Lithium intercalation of carbon-fiber microelectrodes, J. Electrochem. Soc., 1996, vol. 143, p. 24.

    Article  CAS  Google Scholar 

  30. Bograchev, D.A., Volfkovich, Yu. M., Dubasova, V.S., Nikolenko, A.F., Ponomareva, T.A., and Sosenkin, V.E., Russ. J. Electrochem., 2013, vol. 49, p. 115.

    Article  CAS  Google Scholar 

  31. Manthiram, A., A reflection on lithium-ion battery cathode chemistry, Nature Communications, 2020, vol. 11, p. 1550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Thorat, I.V., Stephenson, D.E., and Zacharias, N.A., Quantifying tortuosity in porous Li-ion battery materials, J. Power Sources, 2009, vol. 188, p. 592.

    Article  CAS  Google Scholar 

  33. Latz, A. and Zausch, J., Thermodynamic consistent transport theory of Li-ion batteries, J. Power Sources, 2011, vol. 196, p. 3296.

    Article  CAS  Google Scholar 

  34. Yang, J., Zhou, X., Li, J., Zou, Y., and Tang. J., Study of nano-porous hard carbons as anode materials for lithium ion batteries, Mater. Chem. Phys., 2012, vol. 135, p. 445.

    Article  CAS  Google Scholar 

  35. Vu, A., Qian, Y., and Stein, A., Porous Electrode Materials for Lithium-Ion Batteries–How to Prepare Them and What Makes Them Special, Adv. Energy Mater., 2012, vol. 2, p. 1056.

    Article  CAS  Google Scholar 

  36. Shin, H.C. and Liu, M., Three-dimensional porous copper–tin alloy electrodes for rechargeable lithium batteries, Adv. Functional Mater., 2005, vol. 15, p. 582.

    Article  CAS  Google Scholar 

  37. Liu, H., Liu, X., Li, W., Guo, X., and Wang, Y., Porous carbon composites for next generation rechargeable lithium batteries, Adv. Energy Mater., 2017, vol. 7, 1700283.

    Article  Google Scholar 

  38. Wang, S., Lu, Z., Wang, D, Li, C, and Chen, C., Porous monodisperse @V2O55 microspheres as cathode materials for lithium-ion batteries, J. Mater. Chem., 2011, vol. 21, p. 6365.

    Article  CAS  Google Scholar 

  39. Wang, Z., Li, X, Xu, H., Yang, Y., Cui, Y., and Pan, H., Porous anatase TiO2 constructed from a metal–organic framework for advanced lithium-ion battery, J. Mater. Chem. A, 2014, vol. 2, p. 12571.

    Article  CAS  Google Scholar 

  40. Li, W., Guo, X., Lu, Y., Wang, L., Fan, A., Sui, M., and Yu, H., Amorphous nanosized silicon with hierarchically porous structure for high-performance lithium ion batteries, Energy Storage Mater., 2017, vol. 7, p. 203.

    Article  CAS  Google Scholar 

  41. Zhang, H., Yang, J., Hou, H., Chen, S., and Yao, H., Nitrogen-doped carbon paper with 3D porous structure as a flexible free-standing anode for lithium-ion batteries, Sci. Reports, 2017. vol. 7, p. 7769.

    Google Scholar 

  42. Deng, B., Chen, Y., Wu, P., Han, J., Li, Y., and Zheng, H., Lithium-rich layered oxide nanowires bearing porous structures and spinel domains as cathode materials for lithium-ion batteries, J. Power Sources, 2019, vol. 418, p. 122.

    Article  CAS  Google Scholar 

  43. Zhao, Q., Zhu, Q., Miao, J., Zhang, P., Wan, P., He, L., and Xu, B., Flexible 3D porous MXene foam for high-performance lithium-ion batteries, Nano-Micro Small, 2019, vol. 15, 1904293.

    CAS  Google Scholar 

  44. Li, X., Chen, Z., Li, A., Yu, Y., and Chen, X., Three-dimensional hierarchical porous 95.3structures constructed by two-stage MXene-wrapped Si nanoparticles for Li-Ion batteries, ACS Appl. Mater. Interfaces, 2020, vol. 43, p. 48718.

    Article  Google Scholar 

  45. Hu, S., Song, Y., Yuan, S., Liu, H., Xu, Q., Wang, Y., Wang, C.X., and Xia, Y.Y., A hierarchical structure of carbon-coated Li3VO4 nanoparticles embedded in expanded graphite for high performance lithium ion battery, J. Power Sources., 2016, vol. 303, p. 333.

    Article  CAS  Google Scholar 

  46. Zhao, D. and Cao, M., Highly Graphitized Carbon-Wrapped Li3VO4 Nanoparticles with Hierarchically Porous Structure as a Long Life and High Capacity Anode for Lithium-Ion Batteries, ACS Appl. Mater., 2015, vol. 7, p. 25084.

    Article  CAS  Google Scholar 

  47. Tang, J., Yin, Q., Wang, Q., Li, Q., Wang, H., Xu, Z., Yao, H., Yang, J., Zhou, X, Kim, J.K., and Zhou, L., Two-dimensional porous silicon nanosheets as anode materials for high performance lithium-ion batteries., Nanoscale, 2019, vol.11, p. 10984.

    Article  CAS  PubMed  Google Scholar 

  48. Xiao, C., Du, N., Shi, X., Zhang, H., and Yang, D., Large-scale synthesis of Si@C three-dimensional porous structures as high-performance anode materials for lithium-ion batteries, J. Mater. Chem. A., 2014, vol. 2, p. 20494.

    Article  CAS  Google Scholar 

  49. Ge, M., Lu, Y., Ercius, P., Rong, J., and Fang, X., Large-scale fabrication, 3D tomography, and lithium-ion battery application of porous silicon, Nano Lett., 2014, vol. 14, p. 261.

    Article  CAS  PubMed  Google Scholar 

  50. Chen, H., He, S., Hou, X., Wang, S., Chen, F., Qin, H., and Xia, Y., Nano-Si/C microsphere with hollow double spherical interlayer and submicron porous structure to enhance performance for lithium-ion battery anode, Electrochim. Acta, 2019, vol. 312, p. 242.

    Article  CAS  Google Scholar 

  51. Hao, Q., Zhao, D., Duan, H., Zhou, Q., and Xu, C., Si/Ag composite with bimodal micro-nano porous structure as a high-performance anode for Li-ion batteries, Nanoscale, 2015, vol.7, p.5320.

    Article  CAS  PubMed  Google Scholar 

  52. Han, Z.J., Yabuuchi, N., and Shimomura, K., High-capacity Si–graphite composite electrodes with a self-formed porous structure by a partially neutralized polyacrylate for Li-ion batteries, Energy Environ. Sci., 2012, vol. 5, p. 9014.

    Article  CAS  Google Scholar 

  53. Zhao, T., Ji, R., and Meng, Y., Foamed porous structure Fe–Mn oxides/C composites as novel anode materials of lithium-ion batteries, J. Alloys and Compounds, 2021, vol. 882, 160643.

    Article  CAS  Google Scholar 

  54. Deng, X., Li, W., Zhu, M., Xiong, D., and He, M., Synthesis of Cu-doped Li4Ti5O12 anode materials with a porous structure for advanced electrochemical energy storage: Lithium-ion batteries, Solid State Ionics, 2021, vol. 364, 115614.

    Article  CAS  Google Scholar 

  55. Lu, J., Zhou, C., Liu, Z., Lee, K.S., and Lu, L., LiMn2O4 cathode materials with large porous structure and radial interior channels for lithium ion batteries, Electrochim. Acta, 2016, vol. 212, p. 553.

    Article  CAS  Google Scholar 

  56. Zhou, K., Hu, M., He,Y., Yang, L., Han, C., Lv, R., Kang, F., and Li, B., Transition metal assisted synthesis of tunable pore structure carbon with high performance as sodium/lithium ion battery anode, Carbon, 2018, vol. 129, p. 667.

    Article  CAS  Google Scholar 

  57. Zhao, D., Qin, J., Zheng, L., and Cao, M., Amorphous vanadium oxide/molybdenum oxide hybrid with three-dimensional ordered hierarchically porous structure as a high-performance Li-ion battery anode, Chem. Mater., 2016, vol. 28, p. 4180.

    Article  CAS  Google Scholar 

  58. Yuan, Y.F., Xia, X.H., Wu, J.B., Yang, J.L., and Chen, Y.B., Hierarchically ordered porous nickel oxide array film with enhanced electrochemical properties for lithium ion batteries, Electrochem. Commun., 2010, vol. 12, p. 890.

    Article  CAS  Google Scholar 

  59. Wang, N., Ma, X., Xu, H., Chen, L., Yue, J., Niu, F., and Yang, J., Porous ZnMn2O4 microspheres as a promising anode material for advanced lithium-ion batteries, Nano Energy, 2014, vol. 6, p. 193.

    Article  CAS  Google Scholar 

  60. Zuo, X., Song, Y., and Zhen, M., Carbon-coated NiCo2S4 multi-shelled hollow microspheres with porous structures for high rate lithium ion battery applications, Appl. Surface Sci., 2020, vol. 500, 144000.

    Article  CAS  Google Scholar 

  61. Wu, F., Bai, J., Feng, J., and Xiong, S., Porous mixed metal oxides: design, formation mechanism, and application in lithium-ion batteries, Nanoscale, 2015, vol. 7, p. 17211.

    Article  CAS  PubMed  Google Scholar 

  62. Joho, F., Rykart, B., Blome, A., Novák, P., and Wilhelm, H., Relation between surface properties, pore structure and first-cycle charge loss of graphite as negative electrode in lithium-ion batteries, J. Power Sources, 2001, vol. 97–98, p. 78.

    Article  Google Scholar 

  63. Kulova, T.L., Nikol’skaya, N.F., and Skundin, A.M., Irreversible Processes during the Lithium Intercalation into Graphite: The Passive Film Formation, Russ. J. Electrochem., 2008, vol. 44, p. 558.

    Article  CAS  Google Scholar 

  64. Saikia, D., Wang, T.H., Chou, C.J., Fang, J., and Tsai, L.D., A comparative study of ordered mesoporous carbons with different pore structures as anode materials for lithium-ion batteries, RSC Adv., 2015, vol. 5, p. 42922.

    Article  CAS  Google Scholar 

  65. La, F., Mantia, J., Vetter, P., and Novák, P., Impedance spectroscopy on porous materials: A general model and application to graphite electrodes of lithium-ion batteries, Electrochim. Acta, 2008, vol. 53, p. 4109.

    Article  Google Scholar 

  66. Nakashima, K., Shimizu, T., and Kamakura, Y., A new design strategy for redox-active molecular assemblies with crystalline porous structures for lithium-ion batteries, Chem. Sci., 2020, vol. 11, p. 37.

    Article  CAS  PubMed  Google Scholar 

  67. Qian, G., Liao, X., Zhu, Y., Pan, F., and Chen, X., Designing flexible lithium-ion batteries by structural engineering, ACS Energy Lett., 2019, vol. 4, p. 690.

    Article  CAS  Google Scholar 

  68. Sousa, R.E., Nunes-Pereira, J., Costa, C.M., Silva, M.M., Lanceros-Méndez, S., and Hassoun, J., Influence of the porosity degree of poly (vinylidene fluoride-co-hexafluoropropylene) separators in the performance of Li-ion batteries, J. Power Sources, 2014, vol. 263, p. 29.

    Article  CAS  Google Scholar 

  69. Tsao, C.H. and Kuo, P.L., Poly (dimethylsiloxane) hybrid gel polymer electrolytes of a porous structure for lithium ion battery, J. Membrane Sci., 2015, vol. 489, p. 36.

    Article  CAS  Google Scholar 

  70. Read, J., Mutolo, K., Ervin, M., Behl, W., Wolfenstine, J., Driedger, A., and Foster, D., Oxygen Transport Properties of Organic Electrolytes and Performance of Lithium-Oxygen Battery, J. Electrochem. Soc., 2003, vol. 150, p. A1351.

    Article  CAS  Google Scholar 

  71. Read, J., Ether-Based Electrolytes for the Lithium/Oxygen Organic Electrolyte Battery, J. Electrochem. Soc., 2006, vol. 153, p. A96.

    Article  CAS  Google Scholar 

  72. Sandhu, S.S., Fellner, J.P., and Brutchen, G.W., Diffusion-limited model for a lithium/air battery with an organic electrolyte, J. Power Sources, 2007, vol. 164, p. 365.

    Article  CAS  Google Scholar 

  73. Sandhu, S.S., Brutchen, G.W., and Fellner, J.P., Lithium/air cell: Preliminary mathematical formulation and analysis, J. Power Sources, 2007, vol. 170, p. 196.

    Article  CAS  Google Scholar 

  74. Williford, R.E. and Zhang, J.G., Air electrode design for sustained high power operation of Li/air batteries, J. Power Sources, 2009, vol.194, p. 1164.

    Article  CAS  Google Scholar 

  75. Andrei, P., Zheng, J.P., Hendrickson, M., and Plichta, E.J., Some Possible Approaches for Improving the Energy Density of Li-Air Batteries, J. Electrochem. Soc., 2010, vol. 157, p. A1287.

    Article  CAS  Google Scholar 

  76. Mirzaeian, M. and Hall, P.J., Characterizing capacity loss of lithium oxygen batteries by impedance spectroscopy, J. Power Sources, 2010, vol. 195, p. 6817.

    Article  CAS  Google Scholar 

  77. James, H.J. and Broman, R.F., Modified winklei determination of oxygen in dimethylfojiriamide: oxygen solubility as a function of partial bressure, Anal. Chem. Acla, 1969, vol. 48, p. 411.

    Article  CAS  Google Scholar 

  78. Albertus, P., Girishkumar, G., McCloskey, B., Sánchez-Carrera, R.S., Kozinsky, B., Christensen, J., and Luntz, A.C., Identifying capacity limitations in the Li/oxygen battery, J. Electrochem. Soc., 2011, vol. 158, p. A343.

  79. Visco, S.J., Nimon, E., and De Jonghe, L.C., Lithium–Air. 2009. Secondary Batteries is the Metal–Air Systems Lithium–Air, PolyPlus Battery Company Publ., 2010, p. 375.

  80. Tran, C., Yang, X., and Qu, D., Investigation of the gas-diffusion-electrode used as lithium/air cathode in non-aqueous electrolyte and the importance of carbon material porosity, J. Power Sources, 2010, vol. 195, p. 2057.

    Article  CAS  Google Scholar 

  81. Yang, X., He, P., and Xia, Y., Preparation of mesocellular carbon foam and its application for lithium/oxygen battery, Electrochem. Commun., 2009, vol. 11, p. 1127.

    Article  CAS  Google Scholar 

  82. Xu, D., Wang, Z., Xu, J., and Zhang, X., Novel DMSO-based electrolyte for high performance rechargeable Li–O2 batteries, Chem. Commun., 2012, vol. 48, p. 6948.

    Article  CAS  Google Scholar 

  83. Yang, K., Ying, T.Y, Yiacoumi, S., Tsouris, C., and Vittoratos, E.S., Electrosorption of Ions from Aqueous Solutions by Carbon Aerogel: An Electrical Double-Layer Model, Langmuir, 2001, vol. 17, p. 1961.

    Article  CAS  Google Scholar 

  84. Kraytsberg, A. and Ein-Eli, Y., Review on Li–air batteries–Opportunities, limitations and perspective, J. Power Sources, 2011, vol. 196, p. 886.

    Article  CAS  Google Scholar 

  85. Christensen, J., Albertus, P., Sanchez–Carrera, R.S., Lohmann, T., Kozinsky, B., Liedtke, R., Ahmed, J., and Kojic, A., A critical review of Li/air batteries, J. Electrochem. Soc., 2012, vol. 159, p. R1.

    Article  CAS  Google Scholar 

  86. Girishkumar, G., McCloskey, B., Luntz, A.C., Swanson, S., and Wilcke, W., Lithium–air battery: promise and challenges, J. Phys. Chem. Lett., 2019, vol. 1, p. 2193.

    Article  Google Scholar 

  87. Capsoni, D., Bini, M., Ferrari, S., Quartarone, E., and Mustarelli, P., Recent advances in the development of Li–air batteries, J. Power Sources, 2012, vol. 220, p. 253.

    Article  CAS  Google Scholar 

  88. Xiao, J., Mei, D., Li, X., Xu, W., Wang, D., Graff, G.L., Bennett, W.D., Nie, Z., Saraf, L.V., Aksay, I.A., and Liu, J., Hierarchically Porous Graphene as a Lithium–Air Battery Electrode, Nano Lett., 2011, vol.11, p. 5071.

    Article  CAS  PubMed  Google Scholar 

  89. Andrei, P., Zheng, J.P., Hendrickson, M., and Plichta, E.J., The impact of nano-scaled materials on advanced metal–air battery systems, J. Electrochem. Soc., 2012, vol. 159, p. A770.

    Article  CAS  Google Scholar 

  90. Nimon, V.Y., Visco, S.J., De Jonghe, L.C., Volfkovich, Yu. M., and Bograchev, D.A., Modeling and Experimental Study of Porous Carbon Cathodes in Li–O2 Cells with Non-Aqueous Electrolyte, ECS Electrochem. Lett., 2013, vol. 2, p. A33.

    Article  CAS  Google Scholar 

  91. Chizmadzhev, Yu.A., Markin, V.S., Tarasevich, M.R., and Chirkov, Yu.G., Macrokinetics of Processes in Porous Media (in Russian), Moskow: Nauka, 1971.

  92. Bagotzky, V.S., Kazarinov, V.E., Volfkovich, Yu.M., Kanevsky, L.S., and Beketaeva, L.A., Macrokinetic study of thionyl chloride reduction on porous carbon electrodes, J. Power Sources, 1989, vol. 26, p. 427.

    Article  Google Scholar 

  93. Vielstich, W., Lamm, A., and Gasteiger, H.A., Eds., Hanbook of Fuel Cells. Fundamentals Technology and Applications, Chichester: Wiley, 2003.

    Google Scholar 

  94. Bagotsky, V.S., Fuel Cells: Problems and Solutions, Hoboken, N.J.: Wiley, 2009.

    Google Scholar 

  95. Gottesfeld, S. and Zawodzinski, T.A. In: Advances in Electrochemical Science and Engineering, Alkire, R.C., Gerischer, H., Kolb, D.M., and Tobias, C.W., Eds., 1997, vol. 5, Weinheim: Wiley-VCH, 1997, p. 195.

    Google Scholar 

  96. Volfkovich, Yu.M. and Sosenkin, V.E., Porous structure and wetting of fuel cell components as the factors determining their electrochemical characteristics, Russ. Chem. Rev., 2012, vol. 81, p. 936.

    Article  Google Scholar 

  97. Divisek, J., Eikerling, M., Mazin, V.M., Schmitz, H., Stimming, U., and Volfkovich, Yu.M., A study of capillary porous structure and sorption properties of Nafion proton-exchange membranes swollen in water, J. Electrochem. Soc., 1998, vol. 145, p. 2677.

    Article  CAS  Google Scholar 

  98. Volfkovich, Yu.M., Dreiman, N.A., Belyaeva, O.N., and Blinov, I.A., Standard-porosimetry study of perfluorinated cation-exchange membranes, Sov. Electrochem., 1988, vol. 24, p. 324.

    Google Scholar 

  99. Berezina, N.P., Volfkovich, Yu.M., Kononenko, N.A., and Blinov, I.A., Study of water distribution in heterogenous ion-exchange membranes by the method of standard porosimetry, Sov. Electrochem., 1987, vol. 23, p. 858.

    Google Scholar 

  100. Volfkovich, Yu.M., Kononenko, N.A., Cherniaeva, M.A., Kardash, M.M., Shkabara, A.I., and Pavlov, A.V., Investigation of the porous structure, hydrophilic-hydrophobic and sorption properties of Polycon fibrous ion-exchange membranes and their effect on ion selectivity Membranes [in Russian], Critical technologies. Membranes, 2008, vol. 39, p. 7.

    Google Scholar 

  101. Dobrevsky, I. and Zvezdov, A., Investigation of pore structure of ion exchange membranes, Desalination, 1979, vol. 28, p. 283.

    Article  Google Scholar 

  102. Tatárová, I., Fáber, R., Denoyel, R., and Polakovič, M., Characterization of pore structure of a strong anion-exchange membrane adsorbent under different buffer and salt concentration conditions, J. Chromatography A, 2009, vol. 1216, p. 941.

    Article  Google Scholar 

  103. Gnusin, N.P., Berezina, N.P., Kononenko, N.A., and Dyomina, O.A., Transport structural parameters to characterize ion exchange membranes, J. Membrane Sci., 2004, vol. 243, p. 301.

    Article  CAS  Google Scholar 

  104. Berezina, N.P., Kononenko, N.A., Dyomina, O.A., and Gnusin, N.P., Characterization of ion-exchange membrane materials: Properties vs structure. Adv. Colloid Interface, Sci., 2008, vol. 139, p. 3.

    Article  CAS  PubMed  Google Scholar 

  105. Klaysom, C., Marschall, R., and Moon, S.H., Preparation of porous composite ion-exchange membranes for desalination application, J. Membrane Sci., 2011, vol. 371, p. 37.

    Article  CAS  Google Scholar 

  106. Ariono, D. and Wenten, I.G., Heterogeneous structure and its effect on properties and electrochemical behavior of ion-exchange membrane, Mater. Research Express, 2017, vol. 4, 024006.

    Article  Google Scholar 

  107. Kononenko, N., Nikonenko, V., Grande, D., Larchet, C., Dammak, L., Fomenko, M., and Volfkovich, Yu., Porous structure of ion exchange membranes investigated by various techniques. Adv. in Colloid and Interface Sci., 2017, vol. 246, p. 196.

    Article  CAS  Google Scholar 

  108. Stenina, I., Golubenko, D., Nikonenko, V., and Yaroslavtsev, A., Selectivity of transport processes in ion-exchange membranes: Relationship with the structure and methods for its improvement, Int. J. Mol. Sci., 2020, vol. 21, p. 5517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Jiang, S. and Ladewig, B.P., High ion-exchange capacity semihomogeneous cation exchange membranes prepared via a novel polymerization and sulfonation approach in porous polypropylene, ACS Appl. Mater. Interfaces, 2017, vol. 9, p. 38612.

    Article  CAS  PubMed  Google Scholar 

  110. Zhao, Y., Xiang, P., Wang, Y., Sun, X., and Cao, D., A high ion-conductive and stable porous membrane for neutral aqueous Zn-based flow batteries, J. Membrane Sci., 2021, vol. 640, 119804.

    Article  CAS  Google Scholar 

  111. Li, Z., Ma, Z., Xu, Y., Wang, X., Sun, Y., and Wang, R., Homogeneous ion exchange membranes derived from sulfonated polyethersulfone/N-phthaloyl-chitosan for improved hydrophilic and controllable porosity, Korean J. Chem. Engineering, 2018, vol. 35, p. 1716.

    Article  CAS  Google Scholar 

  112. Novikova, K.S., Abdrashitov, E.F., Kritskaya, D.A., Ponomarev, A.N., Sanginov, E.A., and Dobrovol’skii, Yu.A., Synthesis and Properties of Ion-Exchange Membranes Based on Porous Polytetrafluoroethylene and Sulphonated Polystyrene, Russ. J. Electrochem., 2021, vol. 57, p. 1047.

    Article  CAS  Google Scholar 

  113. Kim, J., Lee, Y., Jeon, J.D., and Kwak, S.Y., Ion-exchange composite membranes pore-filled with sulfonated poly (ether ether ketone) and Engelhard titanosilicate-10 for improved performance of vanadium, J. Power Sources, 2018, vol. 383, p. 1.

    Article  CAS  Google Scholar 

  114. Huang, X. and Dasgupta, P.K., Controlled porosity monolithic material as permselective ion exchange membranes, Analyt. Chim. Acta, 2011, vol. 689, p. 155.

    Article  CAS  Google Scholar 

  115. Chisca, S., Torsello, M., Avanzato, M., Xie, Y., and Boi, C., Highly porous polytriazole ion exchange membranes cast from solutions in non-toxic cosolvents, Polymer, 2017, vol. 126, p. 446.

    Article  CAS  Google Scholar 

  116. Kaçar, Y. and Arica, M.Y., Procion Green H-E4BD-immobilized porous poly (hydroxyethylmethacrylate) ion-exchange membrane: preparation and application to lysozyme adsorption, Colloids Surfaces B: Biointerfaces, 2001, vol. 1, p. 227.

    Article  Google Scholar 

  117. Khan, M.I., Shanableh, A., Khraisheh, M., and AlMomani, F., Synthesis of Porous bimodal porousPO-Based Anion Exchange Membranes for Acid Recovery via Diffusion Dialysis, Membranes, 2022, vol. 12, p. 95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Lee, M.S., Kim, H.K., Kim, C.S., Suh, H.Y., and Nahm, K.S., Thin Pore-Filled Ion Exchange Membranes for High Power Density in Reverse Electrodialysis: Effects of Structure on Resistance, Stability, and Ion Selectivity, Chem. Select, 2017, vol. 2, p. 1974.

    CAS  Google Scholar 

  119. Bakangura, E., Cheng, C., Wu, J., Ge, X., and Ran, J., Hierarchically structured porous anion exchange membranes containing zwetterionic pores for ion separation, J. Membrane Sci., 2017, vol. 537, p. 32.

    Article  CAS  Google Scholar 

  120. Lin, J., Huang, J., Wang, J., Yu, J., You, X., and Lin, X., High-performance porous anion exchange membranes for efficient acid recovery from acidic wastewater by diffusion dialysis, J. Membrane Sci., 2021, vol. 624, 119116.

    Article  CAS  Google Scholar 

  121. Lin, X., Shamsaei, E., Kong, B., Liu, J.Z., Zhao, D., and Xu, T., Asymmetrically porous anion exchange membranes with an ultrathin selective layer for rapid acid recovery, J. Membrane Sci., 2016, vol. 510, p. 437.

    Article  CAS  Google Scholar 

  122. Kim, H., Choi, J., Jeong, N., Jung, Y.G., Kim, H., and Kim, D., Correlations between properties of pore-filling ion exchange membranes and performance of a reverse electrodialysis stack for high power density, Membranes, 2021, vol. 11, p. 609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Chen, N., Long, C., Li, Y., Wang, D., and Zhu, H., layered double hydroxide/poly (2,6-dimethyl-1,4-phenylene membrane oxide) with porous sandwich structure for anion exchange membrane fuel cell applications, J. Membrane Sci., 2018, vol. 552, p. 51.

    Article  CAS  Google Scholar 

  124. Baturina, O., Volfkovich, Yu.M., Sakars, A.V., Wynne, K.J., and Wnek, G.E., Book of Abstracts. 207th Meeting of the Electrochemical Society, Quebec, Canada. May 15–20, 2005.

  125. Volfkovich, Yu.M., Sosenkin, V.E., and Nikolskaya, N.F., Step-by-step study of the porous structure of the catalytic layer of a fuel cell with a proton-conducting membrane, Russ. J. Electrochem., 2010, vol. 46, p. 410.

    Google Scholar 

  126. Napolskii, K.S., Barczuk, P.J., Vassiliev, S.Yu., Veresov, A.G., Tsirlina, G.A., and Kulesza, P.J., Templating of electrodeposited platinum group metals as a tool to control catalytic activity, Electrochim. Acta, 2007, vol. 52, p. 7910.

    Article  CAS  Google Scholar 

  127. Kyotani, T., Xu, W.H., and Yokoyama, Y., Chemical modification of carbon-coated anodic alumina films and their application to membrane filter, J. Membrane Sci., 2002, vol. 196, p. 231.

    Article  CAS  Google Scholar 

  128. Gladysheva, T.D., Shkolnikov, E.I., Volfkovich, Yu.M., and Podlovchenko, B.I., The porous structure of dispersed platinum, Sov. Electrochem., 1982, vol. 18, p. 337.

  129. Podlovchenko, B.I., Gladysheva, T.D., Vyaznikovtseva, O.V., and Volfkovich, Yu.M., Effects of the porous structure of platinum on the adsorption of sulfate and chloride anions, Sov. Electrochem., 1983, vol. 19, p. 381.

    Google Scholar 

  130. Volfkovich, Yu.M. and Shkolnikov, E.I., Analysis of the macrokinetic operating-conditions of porous gas-diffusion electrodes, Sov. Electrochem., 1983, vol. 19, p.586.

    Google Scholar 

  131. Volfkovich, Yu.M. and Shkolnikov, E.I., Influence of the porous structure on the characteristics of hydrophobic gas-diffusion electrodes, Sov. Electrochem., 1983, vol. 19, p. 1177.

    Google Scholar 

  132. Volfkovich, Yu.M., Shkolnikov, E.I., Dubasova, V.S., and Ponomarev, V.A., Development of methods for the investigation of porous structures and establishment of the nature of their influence on the macrokinetics of processes in gas-diffusion electrodes, Sov. Electrochem., 1983, vol. 19, p. 681.

    Google Scholar 

  133. Wu, G., Chen, Y.-Sh., and Xu, B.-Q., Remarkable support effect of SWNTs in Pt catalyst for methanol electrooxidation, Electrochem. Comm., 2005, vol. 7, p. 1237.

    Article  CAS  Google Scholar 

  134. Frackowiak, E., Lota, G., Cacciaguerra, T., and Beguin, F., Carbon nanotubes with Pt–Ru catalyst for methanol fuel cell, Electrochem. Comm., 2006, vol. 8, p. 129.

    Article  CAS  Google Scholar 

  135. Guo, D.-J. and Li, H.-L., Electrocatalytic oxidation of methanol on Pt modified single-walled carbon nanotubes, J. Power Sources, 2006, vol. 160, p. 44.

    Article  CAS  Google Scholar 

  136. Wang, C.-H., Shih, H.-C., Tsai., Y.-T., Du, H.-Y., Chen, L.-C., and Chen, K.-H., High methanol oxidation activity of electrocatalysts supported by directly grown nitrogen-containing carbon nanotubes on carbon, Electrochim. Acta, 2006, vol. 52, p. 1612.

    Article  CAS  Google Scholar 

  137. Prabhuram, J., Zhao, T.S. Liang, Z.X., and Chen, R., A simple method for the synthesis of PtRu nanoparticles on the multi-walled carbon nanotube for the anode of a DMFC, Electrochim. Acta, 2007, vol. 52, p. 2649.

    Article  CAS  Google Scholar 

  138. Chen, C.-C., Chen, C.-F., Chen, C.-M., and Chuang, F.-T., Modification of multi-walled carbon nanotubes by microwave digestion method as electrocatalyst supports for direct methanol fuel cell applications, Electrochem. Comm., 2007, vol. 9, p. 159.

    Article  Google Scholar 

  139. Tsai, M.-C., Yeh, T.-K., and Tsai, C.-H., An improved electrodeposition technique for preparing platinum and platinum–ruthenium nanoparticles on carbon nanotubes directly grown on carbon cloth for methanol oxidation, Electrochem. Comm., 2006, vol. 8, p. 1445.

    Article  CAS  Google Scholar 

  140. Wang, H.J., Yu, H., Peng, F., and Lv, P., Methanol electrocatalytic oxidation on highly dispersed Pt/sulfonated-carbon nanotubes catalysts, Electrochem. Comm., 2006, vol. 8, p. 499.

    Article  CAS  Google Scholar 

  141. Tusseeva, E.K., Mayorova, N.A., Sosenkin, V.E., Nikol’skaya, N.F., Volfkovich, Yu. M., Krestinin, A.V, Zvereva, G.I., Grinberg, V.A., and Khazova, O.A., Carbon nanotubes as a support for Pt-and Pt–Ru-catalysts of reactions proceeding in fuel cells, Russ. J. Electrochem., 2008, vol. 44, p. 884.

    Article  Google Scholar 

  142. Mayorova, N.A., Tusseeva, E.K., Sosenkin, V.E., Rychagov, A.Yu., Volfkovich, Yu.M., Krestinin, A.V., Zvereva, G.I., Zhigalina, O.M., and Khazova, O.A., Effect of the functionalizing of carbon nanotubes on the electrodeposited catalysts' structure and catalytic properties, Russ. J. Electrochem., 2009, vol. 45, p. 1089.

    Article  Google Scholar 

  143. He, D., Mu, S., and Pan, M., Perfluorosulphonic acid-functionalized Pt/carbon nanotube catalysts with enhanced stability and performance for use in proton exchange membrane fuel cells, Carbon, 2011, vol. 49, p. 82.

    Article  CAS  Google Scholar 

  144. Matsumori, H., Takenaka, S., and Matsune, H., Preparation of carbon nanotube-supported Pt catalysts covered with silica layers; application to cathode catalysts for PEFC, Appl. Catal. A, 2010, vol. 373, p. 176.

    Article  CAS  Google Scholar 

  145. Mirzaei, F., Parnian, M.J., and Rowshanzamir, S., Durability investigation and performance study of hydrothermal synthesized platinum-multi walled carbon nanotube nanocomposite catalyst for proton exchange membrane fuel cell, Energy, 2017, vol. 138, p. 696.

    Article  CAS  Google Scholar 

  146. Cha, B.C., Jun, S., Jeong, B., Ezazi, M., Kwon, G., and Kim, D., Carbon nanotubes as durable catalyst supports for oxygen reduction electrode of proton exchange membrane fuel cells, J. Power Sources, 2018, vol. 401, p. 296.

    Article  CAS  Google Scholar 

  147. Xu, J.B. and Zhao, T.S., Synthesis of well-dispersed Pt/carbon nanotubes catalyst using dimethylformamide as a cross-link, J. Power Sources, 2010, vol.195, p. 1071.

    Article  CAS  Google Scholar 

  148. Tong, X., Zhang, J., Zhang, G., Wei, Q., and Chenitz, R., Ultrathin carbon-coated Pt/carbon nanotubes: a highly durable electrocatalyst for oxygen reduction, Chem. Mater., 2017, vol. 29, p. 9579.

    Article  CAS  Google Scholar 

  149. Zhang, W., Minett, A.I., Gao, M., and Zhao, J., Integrated High-Efficiency Pt/Carbon Nanotube Arrays for PEM Fuel Cells, Adv. Energy Mater., 2011, vol.1, p. 671.

    Article  CAS  Google Scholar 

  150. Kim, H. and Moon, S.H., Chemical vapor deposition of highly dispersed Pt nanoparticles on multi-walled carbon nanotubes for use as fuel-cell electrodes, Carbon, 2011, vol. 49, p. 1491.

    Article  CAS  Google Scholar 

  151. Kanninen, P, Eriksson, B., Davodi, F., and Buan, M.E., Carbon corrosion properties and performance of multi-walled carbon nanotube support with and without nitrogen-functionalization in fuel cell electrodes, Electrochim. Acta, 2020, vol. 332, 135384.

    Article  CAS  Google Scholar 

  152. Zhang, X., Zhang, J., Huang, H., Jiang, Q., and Wu, Y., Platinum nanoparticles anchored on graphene oxide-dispersed pristine carbon nanotube supports: High-performance electrocatalysts toward methanol electrooxidation, Electrochim. Acta, 2017, vol. 258, p. 919.

    Article  CAS  Google Scholar 

  153. Lee, J.W., Chung, S., and Kim, S., Preparation and electroactivity of Pt catalysts on unzipped multi-walled carbon nanotube and graphene oxide, J. Nanosci. and Nanotechnol., 2020, vol. 20, p. 4998.

    Article  Google Scholar 

  154. Cha, B.C., Jun, S., Jeong, B., Ezazi, M., Kwon, G., and Kim, D., Carbon nanotubes as durable catalyst supports for oxygen reduction electrode of proton exchange membrane fuel cells, J. Power Sources, 2018, vol. 401, p. 296.

    Article  CAS  Google Scholar 

  155. Wang, Q., Dai, N., and Zheng, J.P., Preparation and catalytic performance of Pt supported on Nafion® functionalized carbon nanotubes, J. Electroanal. Chem., 2020, vol. 854, 113508.

    Article  Google Scholar 

  156. Bharti, A. and Cheruvally, G., Influence of various carbon nano-forms as supports for Pt catalyst on proton exchange membrane fuel cell performance, J. Power Sources, 2017, vol. 360, p. 196.

    Article  CAS  Google Scholar 

  157. Cai, Z., Liu, C., Wu, G., Chen, X., and Chen, X., Palladium nanoparticles deposit on multi-walled carbon nanotubes and their catalytic applications for electrooxidation of ethanol and glucose, Electrochim. Acta, 2013, vol. 112, p. 756.

    Article  CAS  Google Scholar 

  158. Yan, M., Jiang, Q., Zhang, T., Wang, J., and Yang, L., Three-dimensional low-defect carbon nanotube/nitrogen-doped graphene hybrid aerogel-supported Pt nanoparticles as efficient electrocatalysts toward the methanol electrooxidation, J. Mater. Chem. A, 2018, vol.6, p. 18165.

    Article  CAS  Google Scholar 

  159. Wang, C.C., Hung, K.Y., Ko, T.E., Hosseini, S., and Li, Y.Y., Carbon-nanotube-grafted and nano-Co3O4-doped porous carbon derived from metal-organic framework as an excellent bifunctional catalyst for zinc–air battery, J. Power Sources, 2020, vol. 452, 227841.

    Article  CAS  Google Scholar 

  160. Ghasemi, M, Ismail, M., Kamarudin, S.K., and Saeedfar, K., Carbon nanotube as an alternative cathode support and catalyst for microbial fuel cells, Appl. Energy, 2013, vol. 102, p. 1050.

    Article  CAS  Google Scholar 

  161. Korchagin, O.V., Zagudaeva, N.M., Radina, M.V., Bogdanovskaya, V.A., and Tarasevich, M.R., Electrooxidation of hydrogen at Pt/carbon nanotube catalysts for hydrogen–air fuel cell, Russ. J. Electrochem., 2017, vol. 53, p. 615.

    Article  CAS  Google Scholar 

  162. Li, F., Liang, J., Zhu, W., Song, H., Wang, K., and Li, C., In-Situ Liquid Hydrogenation of m-Chloronitrobenzene over Fe-Modified Pt/Carbon Nanotubes Catalysts, Catalysts, 2018, vol. 8, p. 62.

    Article  CAS  Google Scholar 

  163. Gurau,V., Bluemle, M.J., De Castro, E.S., Tsou, J., and Zawodzinski, T.A., Characterization of transport properties in gas diffusion layers for proton exchange membrane fuel cells: 1. Wettability (internal contact angle to water and surface energy of GDL fibers), J. Power Sources, 2006, vol. 160, p. 1156.

    Article  CAS  Google Scholar 

  164. Volfkovich, Yu. M., Sosenkin, V.E., Nikolskaya, N.F., and Kulova, T.L., Investigation of the porous structure and hydrophilic-hydrophobic properties of gas diffusion layers of fuel cell electrodes with a proton-conducting membrane, Russ. J. Electrochem., 2008, vol. 44, p. 278.

    Article  CAS  Google Scholar 

  165. Gostik, J.T., Fowler, M.W., Ioannidis, M.A., Pritzker, M.D., Volfkovich, Yu. M., and Sakars, A.V., Capillary pressure and hydrophilic porosity in gas diffusion layers for polymer electrolyte fuel cells, J. Power Sources, 2006, vol. 156, p. 375.

    Article  Google Scholar 

  166. Gurevich, I.G., Volfkovich, Yu.M., and Bagotskii, V.S., Liquid Porous Electrodes (in Russian), Minsk: Nauka i Tekhnika, 1974.

    Google Scholar 

  167. Volfkovich, Yu.M. and Shkolnikov, E.I., Structural and wetting properties of fuel cell components I, II, II, Sov. Electrochem., 1983, vol. 19, p. 586, 673, 1177.

  168. Fuller, T.F. and Newman, J., Water and thermal management in solid-polymer-electrolyte fuel cells, J. Electrochem. Soc. 1993, vol.140, p. 1218.

    Article  CAS  Google Scholar 

  169. Chizmadzhev, Yu. A. and Chirkov, Yu.G., Porous Electrodes, in: Comprehensive Treatise of Electrochemistry, vol. 6, Yeger, Effect, Bockris, j.O’M., Conway, Boron, and Sarangapani, Sample, Eds., New York: Plenum, 1983, p. 317.

  170. Eikerling, M., Kharkats, Yu.I., Kornyshev, A.A., and Volfkovich, Yu.M., Phenomenological theory of electro-osmotic effect and water management in polymer electrolyte proton-conducting membranes, J. Electrochem. Soc., 1998, vol. 145, p. 2684.

    Article  CAS  Google Scholar 

  171. Zawodzinski, T.A., Davey, Jr. J., Valerio, J., and Gottesfeld, S., The water content dependence of electro-osmotic drag in proton-conducting polymer electrolytes, Electrochim. Acta, 1995, vol. 40, p. 297.

    Article  CAS  Google Scholar 

  172. Sosenkin, V.E., Volfkovich, Yu.M., and Bagotzkii, V.S., Electrochemical flooding curves, Sov. Electrochem., 1973, vol. 9, p. 394.

    Google Scholar 

  173. Volfkovich, Yu.M., Relationship between Electrochemical and Capillary Properties of Capillary-Membrane Cell Elements, Sov. Electrochem., 1978, vol.14, p. 425.

    Google Scholar 

  174. Volfkovich, Yu.M., Relationship between Electrochemical and Capillary Properties of Capillary-Membrane Cell Elements. II, Sov. Electrochem., 1978, vol.14, p.717.

    Google Scholar 

  175. Volfkovich, Yu.M., Relationship between Electrochemical and Capillary Properties of Capillary-Membrane Cell Elements. III, Sov. Electrochem., 1978, vol. 14, p. 1282.

    Google Scholar 

  176. Khrizolitova, M.A., Volfkovich, Yu. M., Mikhaleva, G.M., and Tabakman, L.S., Influence of capillary phenomena on electrochemical characteristics of phosphoric-acid-electrolyte matrix, Sov. Electrochem., 1988, vol. 24, p. 709.

    Google Scholar 

  177. Conway, B., Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, Berlin, Springer Science & Business Media, 2013,

    Google Scholar 

  178. Bagotsky, V.S., Skundin, A.M., and Volfkovich, Yu.M., Electrochemical Power Sources. Batteries, Fuel Cells, Supercapacitors. New York: Wiley, 2015,

    Google Scholar 

  179. Langendahl, P.-A., Roby, H., Potter, S., and Cook, M., Smoothing peaks and troughs: Intermediary practices to promote demand side response in smart grids, Energy Res. Soc. Sci., 2019, vol. 58, 101277.

    Article  Google Scholar 

  180. Chapaloglou, S., Nesiadis, A., Iliadis, P., Atsonios, K., Nikolopoulos, N., Grammelis, P., Yiakopoulos, C., Antoniadis, I., and Kakaras, E., Smart energy management algorithm for load smoothing and peak shaving based on load forecasting of an island’s power system, Appl. Energy, 2019, vol. 238, p. 627.

    Article  Google Scholar 

  181. Reihani, E., Motalleb, M., Ghorbani, R., and Saad Saoud, L., Load peak shaving and power smoothing of a distribution grid with high renewable energy penetration, Renew. Energy. 2016, vol. 86, p. 1372.

    Article  Google Scholar 

  182. Shabshab, S.C., Lindahl, P.A., Nowocin, J.K., Donnal, J., Blum, D., Norford, L., and Leeb, S.B., Demand Smoothing in Military Microgrids through Coordinated Direct Load Control, IEEE Trans. Smart Grid, 2020, vol. 11, p. 1917.

    Article  Google Scholar 

  183. Volfkovich, Yu.M., Supercapacitors: problems and development prospects, Russ. Chem. Rev., 2022, vol. 91, RCR5044.

    Article  Google Scholar 

  184. Vorotyntsev, M., Modern Aspects of Electrochemistry, vol. 17, New York: Plenum, 1986, p. 131.

    Google Scholar 

  185. Ermakova, A.S., Popova, A.V., Chayka, M.Y., and Kravchenko, T.A., Redox functionalization of carbon electrodes of electrochemical capacitors, Russ. J. Electrochem., 2017, vol. 53, p. 608.

    Article  CAS  Google Scholar 

  186. Yan, D., Bazant, M.Z., Biesheuvel, P.M., Pugh, M.C., and Dawson, F.P., Theory of linear sweep voltammetry with diffuse charge: Unsupported electrolytes, thin films, and leaky membranes, Phys. Rev. E, 2017, vol. 95, 033303.

    Article  PubMed  Google Scholar 

  187. Volfkovich, Yu. M, Mazin, V.M, and Urisson, N.A., The influence of the porous structure, microkinetics and diffusion properties on the charge-discharge behaviour of conducting polymers, Russ. J. Electrochem., 1998, vol. 34, p. 740.

    CAS  Google Scholar 

  188. de Levie, R., On porous electrodes in electrolyte solutions. I. Capacitance effects, Electrochim. Acta, 1963, vol. 8, p. 751.

    Article  Google Scholar 

  189. de Levie, R., On porous electrodes in electrolyte solutions–IV, Electrochim. Acta, 1964, vol. 9, p. 1231.

    Article  CAS  Google Scholar 

  190. Pell, W.G. and Conway, B.E., Voltammetry at a de Levie brush electrode as a model for electrochemical supercapacitor behaviour, J. Electroanal. Chem., 2001, vol. 500, p. 121.

    Article  CAS  Google Scholar 

  191. Kroupa, M., Offer, G.J., and Kosek, J., Modelling of supercapacitors: Factors influencing performance, J. Electrochem. Soc., 2016, vol. 163, p. A2475.

    Article  CAS  Google Scholar 

  192. Volfkovich, Yu.M., Electrochemical Supercapacitors (a Review), Russ. J. Electrochem., 2021, vol. 57, p. 311.

    Article  CAS  Google Scholar 

  193. Pandolfo, A.G. and Hollenkamp, A.F., Carbon properties and their role in supercapacitors, J. Power Sources, 2006, vol. 157, p. 11.

    Article  CAS  Google Scholar 

  194. Simon, P. and Gogotsi, Y., Perspectives for electrochemical capacitors and related devices, Nature Materls, 2020, vol. 19, p. 1151.

    Article  CAS  Google Scholar 

  195. Inagaki, M., Konno, H., and Tanaike, O., Carbon materials for electrochemical capacitors. J. Power Sources, 2010, vol. 195, p. 7880.

    Article  CAS  Google Scholar 

  196. Miller, J.R., Engineering electrochemical capacitor applications, J. Power Sources, 2016, vol. 326, p. 726.

    Article  CAS  Google Scholar 

  197. Wang, L., Inagaki, M., and Toyoda, M., Carbon materials for electrochemical capacitors, J. Power Sources, 2010, vol.195, p. 7880.

    Article  Google Scholar 

  198. Largeot, C., Portet, C., Chmiola, J., Taberna, P.L., Gogotsi, Y., and Simon, P., Relation etween the Ion Size and Pore Size for an Electric Double-Layer. Capacitor, J. Amer. Chem. Soc., 2008, vol. 130, p. 2730.

    Article  CAS  Google Scholar 

  199. Gryglewicz, G., Machnikowski, J., Lorenc–Grabowska, E., Lota, G., and Frackowiak, E., Effect of pore size distribution of coal-based activated carbons on double layer capacitance, Electrochim. Acta, 2005, vol. 50, p.1197.

    Article  CAS  Google Scholar 

  200. Wang, L., Fujita, M., and Inagaki, M., Effect of pore size distribution of coal-based activated carbons on double layer capacitance, Electrochim. Acta, 2007, vol. 52, p. 1296.

    Google Scholar 

  201. Tarasevich, M.R., Electrochemistry of Carbon Materials, 1984, Moscow: Nauka.

    Google Scholar 

  202. Tarkovskaya, I.A., Oxidized Carbon, Kiev: Naukova dumka, 1981.

    Google Scholar 

  203. Solyanikova, A.S., Chayka, M.Yu., Parfenov, V.A., Kirik, S.D., and Kravchenko, T.A., Activation of Mesostructured Electrode Materials for Electrochemical Capacitors, Russ. J. Electrochem., 2015, vol. 51, p.764.

    Article  Google Scholar 

  204. Volfkovich, Yu.M., Goroncharovskaya, I.V., Evseev, A.K., Sosenkin, V.E., and Gol’din M.M., The Effect of Electrochemical Modification of Activated Carbons by Polypyrrole on Their Structure Characteristics, Composition of Surface Compounds, and Adsorption Properties, Russ. J. Electrochem., 2017, vol. 53, p. 1363.

    Article  Google Scholar 

  205. Kodama, M., Yamashita, J., Soneda,Y., Hatori, H., and Kamegawa, H., Preparation and electrochemical characteristics of N-enriched carbon foam, Carbon, 2007, vol. 45, p. 1105.

    Article  CAS  Google Scholar 

  206. Oda, H.H., Yamashita, A.S., Minoura, M. Okamoto, and Morimoto, T., Modification of the oxygen-containing functional group on activated carbon fiber in electrodes of an electric double-layer capacitor, J. Power Sources, 2006, vol. 158, p. 1510.

    Article  CAS  Google Scholar 

  207. Hulicova, D., Kodama, M., and Hatori, H., Electrochemical performance of nitrogen-enriched carbons in aqueous and non-aqueous supercapacitors, Chem. Mater., 2006, vol. 18, p. 2318.

    Article  CAS  Google Scholar 

  208. Guo, B., Ma, R., Li, Z., Guo, S., Luo, J., Yang, M., Liu, Q., Thomas, T., and Wang, J., Hierarchical N-Doped Porous Carbons for Zn–Air Batteries and Supercapacitors, Nano-Micro Letters, 2020, vol. 12, p. 2.

    Article  Google Scholar 

  209. Ghosh, S., Jeong, S.M., and Polaki, S.R., A review on metal nitrides/oxynitrides as an emerging supercapacitor electrode beyond oxide, Korean J. Chem. Eng., 2018, vol. 35, p. 1389.

    Article  CAS  Google Scholar 

  210. Kodama, M., Yamashita, J., Soneda, Y., Hatori, H., Kamegawa, K., and Moriguchi, I., Structure and electrochemical capacitance of nitrogen-enriched mesoporous carbon, Chem. Lett., 2006, vol. 35, p. 680.

    Article  CAS  Google Scholar 

  211. Li, W., Chen, D., Li, Z., Shi, Y., Wang, Y., Huang, J., Zhao, D., and Jiang, Z., Nitrogen enriched mesoporous carbon spheres obtained by a facile method and its application for electrochemical capacitor, Electrochem. Commun, 2007, vol. 9, p. 569.

    Article  CAS  Google Scholar 

  212. Konno, H., Onishi, H., Yoshizawa, N., and Azumi, K., MgO-templated nitrogen-containing carbons derived from different organic compounds for capacitor electrodes, J. Power Sources, 2010, vol. 195, p. 667.

    Article  CAS  Google Scholar 

  213. Frackowiak, E., Lota, G., Machnikowski, J., Vix-Gutrl, C., and Beguin, F., Optimisation of supercapacitors using carbons with controlled nanotexture and nitrogen content, Electrochim. Acta, 2006, vol. 51, p. 2209.

    Article  CAS  Google Scholar 

  214. Guo, H. and Gao, Q., Boron and nitrogen co-doped porous carbon and its enhanced properties as supercapacitor, J. Power Sources, 2009, vol. 186, p. 551.

    Article  CAS  Google Scholar 

  215. Konno, H., Ito, T., Ushiro, M., Fushimi, K., and Azumi, K., High capacitance B/C/N composites for capacitor electrodes synthesized by a simple method, J. Power Sources, 2010, vol. 195, p. 1739.

    Article  CAS  Google Scholar 

  216. Sepehri, S., Garcia, B.B., Zhang, Q., and Cao, G., Enhanced electrochemical and structural properties of carbon cryogels by surface chemistry alteration with boron and nitrogen, Carbon, 2009, vol. 47, p. 1436.

    Article  CAS  Google Scholar 

  217. Volfkovich, Yu.M., Bograchev, D.A., Rychagov, A.Yu, Sosenkin, V.E., and Chaika, M.Yu., Supercapacitors with carbon electrodes. Energy efficiency: modeling and experimental verification, J. Solid State Electrochem., 2015, vol. 19, p. 1.

    Article  Google Scholar 

  218. Bograchev, D.A., Gryzlov, D.Yu., Sosenkin, V.E., and Volfkovich, Yu.M., Modeling and experimental verification of operation of supercapacitors with carbon electrodes in non-aqueous electrolytes. The energy efficiency, Electrochim. Acta, 2019, vol. 319, p. 552.

    Article  CAS  Google Scholar 

  219. Rychagov, A.Yu., Izmaylova, M.Y., Sosenkin, V.E., Volfkovich, Yu.M., and Denshchikov, K.K., Electrochemical behavior of dispersed carbon in electrolytes based on ionic liquid 1-methyl-3-butylimidozolium tetrafluoroborate (in Russian), Electrochem. energetics, 2015, vol.15, p. 3.

  220. Lu, Y., Zhang, S., Yin, J., Bai, C., Zhang, J., Li, Y., Yang, Y., Ge, Z., Zhang, M., Wei, L., Ma, M., Ma,Y., and Chen, Y., Mesoporous activated carbon materials with ultrahigh mesopore volume and effective specific surface area for high performance supercapacitors, Carbon, 2017, vol. 124, p. 64.

    Article  CAS  Google Scholar 

  221. Efimov, M.N., Sosenkin, V.E., Volfkovich, Yu.M., Vasilev, A.A., Muratov, D.G., Baskakov, S.A., Efimov, O.N., and Karpacheva, G.P., Electrochemical performance of polyacrylonitrile-derived activated carbon prepared via IR pyrolysis, Electrochem. Commun., 2018, vol. 96, p. 98.

    Article  CAS  Google Scholar 

  222. Borenstein, A., Hanna, O., Attias, R., and Luski, S., Thierry Brousse and Doron Aurbach. Carbon-based composite materials for supercapacitor electrodes: a review, J. Mater. Chem. A, 2017, vol. 5, 12653.

    Article  CAS  Google Scholar 

  223. Wang, H., Zhong, Y., Li, Q., Yang, J., and Dai, Q., Cationic starch as a precursor to prepare porous activated carbon for application in supercapacitor electrodes, J. Phys. and Chem. Solids, 2008, vol. 69, p. 2420.

    Article  CAS  Google Scholar 

  224. Volfkovich, Y.M., Mikhailin, A.A., Bograchev, D.A., Sosenkin, V.E., and Bagotsky, V.S., Studies of supercapacitor carbon electrodes with high pseudocapacitance, Recent Trend in Electrochem. Sci. Technol., 2012, p. 159.

    Book  Google Scholar 

  225. Volfkovich, Yu.M., Bograchev, D.A., Mikhalin, A.A., and Bagotsky, V.S., Supercapacitor carbon electrodes with high capacitance, J. Solid State Electrochem., 2014. vol. 18, p. 135.

    Article  Google Scholar 

  226. Zhao, J. and Burke, A.F., Electrochemical capacitors: Materials, technologies and performance, Energy Storage Mater., 2021, vol. 36, p. 31.

    Article  Google Scholar 

  227. Nishihara, H., Itoi, H., Kogure, T., Hou, P., Touhara, H., Okino, F., and Kyotani, T., Chem., Investigation of the ion storage/transfer behavior in an electrical double layer capacitor by using ordered microporous carbons as model materials, Cemistry Eu. J., 2009, vol. 15, p. 5355.

    Article  CAS  Google Scholar 

  228. Rychagov, A.Yu., Volfkovich, Yu.M., Vorotyntsev, M.A., Kvacheva, M.A., Konev, D.V., Krestinin, A.V., Kryazhev, Yu.G., Kuznetsov, V.L., Kukushkina, Y.A., Mukhin, V.M., Sokolov, V.V., and Chervonobrodov, S.P., Promising electrode materials for supercapacitors (in Russian), Electrochem. Energetics, 2012, vol. 12, p. 167.

    Article  CAS  Google Scholar 

  229. Ariyanto, T., Glaesel, J., Kern, A., Zhang, G., and Etzold, B.J., Improving control of carbide-derived carbon microstructure by immobilization of a transition-metal catalyst within the shell of carbide/carbon core–shell structures, Beilstein J. Nanotechnol., 2019, vol. 10, p. 419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Krüner, B., Odenwald, C., Tolosa, A., Schreiber, A., Aslan, M., Kickelbick, G., and Presser, V., Carbide-derived carbon beads with tunable nanopores from continuously produced polysilsesquioxanes for supercapacitor electrodes, Sustainable Energy Fuels, 2017, vol. 1. p. 1588.

    Article  Google Scholar 

  231. Dhaka, T.P. Chapter 8 is the Simple Parallel-Plate Capacitors to High–Energy Density Future Supercapacitors: A Materials Review (Carbide-Derived Carbon is the an overview), Emerging Materials for Energy Conversion and Storage, 2018, p. 247.

  232. Yang, X., Fei, B., Ma, J., Liu, X., Yang, S., Tian, G., and Jiang, Z., Porous nanoplatelets wrapped carbon aerogel by pyrolysis of regenerated bamboo cellulose aerogels as supercapacitor electrodes, Carbohydrate Polymers, 2018, vol. 180, p. 385.

    Article  CAS  PubMed  Google Scholar 

  233. Baskakov, S.A., Baskakova, Y.V., Kabachkov, E.N., Dremova, N.N., Michtchenko, A., and Shulga, Yu.M., Novel Superhydrophobic Aerogel on the Base of Polytetrafluoroethylene, ACS Appl. Mater. Interfaces, 2019, vol. 35, p. 32517.

    Article  Google Scholar 

  234. Boinovich, L.B. and Emelyanenko, A.M., Hydrophobic materials and coatings: principles of design, properties and applications, Russ. Chem. Rev., 2008, vol. 77, p. 583.

    Article  CAS  Google Scholar 

  235. http://www.ras.ru/news/shownews.aspx?id=b53dad2c- d02c-44b3-8955-305136cb8a30.

  236. Volfkovich, Yu. M., Sosenkin, V.E., Mayorova, N.A., Rychagov, A.Yu., Baskakov, S.A., Kabachkov, E.N., Korepanov, V.I., Dremova, N.N., Baskakova, Y.V., and Shulga, Yu. M., PTFE/rGO Aerogels with Both Superhydrophobic and Superhydrophilic Properties for Electroreduction of Molecular Oxygen, Energy Fuels, 2020, vol. 34, p. 7573.

    Article  CAS  Google Scholar 

  237. Volfkovich, Yu.M., Sosenkin, V.E., Maiorova, N.A., Rychagov, A.Yu., Baskakov, S.A., Kabachkov, E.N., Korepanov, V.I., Dremova, N.N., Baskakova, Yu.V., and Shulga, Yu.M., Graphene-Based Aerogels Possessing Superhydrophilic and Superhydrophobic Properties and Their Application for Electroreduction of Molecular Oxygen, Colloid J., 2021, vol. 83, p. 284.

    Article  CAS  Google Scholar 

  238. Volfkovich, Yu.M., Lobach, A.S., Spitsyna, N.G., Baskakov, S.A., Sosenkin, V.E., Rychagov, A.Yu., Kabachkov, E.N., Sakars, A., Michtchenko, A., and Shulga, Yu.M., Hydrophilic and hydrophobic pores in reduced graphene oxide aerogel, J. Porous Mater., 2019, vol. 26, p. 1111.

    Article  CAS  Google Scholar 

  239. Volfkovich, Yu.M., Rychagov, A.Yu., Sosenkin, V.E., and Krestinin, A.V., A power electrochemical supercapacitor based on carbon nanotubes (in Russian), Electrochem. energetic, 2008, vol. 8, p.106.

  240. Yang, Z., Tian, J., Yin, Z., Cui, C., Qian, W., and Wei, F., Carbon nanotube- and graphene-based nanomaterials and applications in high-voltage supercapacitor: A review, Carbon, 2019, vol. 141, p. 467.

    Article  CAS  Google Scholar 

  241. Volfkovich, Yu. M., Rychagov, A.Yu., Sosenkin, V.E., Efimov, O.N., Os’makov, M.I., and Seliverstov, A.F., Measuring the Specific Surface Area of Carbon Nanomaterials by Different Methods, Russ. J. Electrochem., 2014, vol. 50, p. 1099.

    Article  CAS  Google Scholar 

  242. Dong, B., He, B.L., Xu, C.L., and Li, H.L., Preparation and electrochemical characterization of polyaniline/multi-walled carbon nanotubes composites for supercapacitor, Materials Science and Engineering B., 2007, vol. 143, p. 7.

    Article  CAS  Google Scholar 

  243. Wang, J., Xu, Y., Chen, X., and Sun, X., Capacitance properties of single wall carbon nanotube/polypyrrole composite films, Composites Science and Technology, 2007, vol. 67, p. 2981.

    Article  CAS  Google Scholar 

  244. Dong, B., He, B.L., Xu, C.L., and Li, H.L., Preparation and electrochemical characterization of polyaniline/multi-walled carbon nanotubes composites for supercapacitor, Mater. Sci. and Engineering B, 2007, vol. 143, p. 7.

    Article  CAS  Google Scholar 

  245. Honda, Y., Takeshige, M., Shiozaki, H., Kitamura, T., Yoshikawa, K., Chakarabarti, S., Suekane, O., Pan, L., Nakayama, Y., Yamagata, M., and Ishikawa, M., Vertically aligned double-walled carbon nanotube electrode prepared by transfer methodology for electric double layer capacitor, J. Power Sources, 2008, vol. 185, p. 1580.

    Article  CAS  Google Scholar 

  246. Chee, W.K., Lim, W.K., Zainal, H.N., Huang, Z., Harrison, N.M., and Andou, Y., Flexible Graphene-Based Supercapacitors: A Review, J. Phys. Chem. C, 2016, vol. 120, p. 4153.

    Article  CAS  Google Scholar 

  247. Eftekhari, A., Shulga, Y.M., Baskakov, S.A., and Gutsev, G.L., Graphene oxide membranes for electrochemical energy storage and conversion, Intern. J. Hydrogen Energy, 2018, vol. 43, p. 2307.

    Article  CAS  Google Scholar 

  248. Shulga, Yu.M., Baskakova, S.A., Baskakova, Yu.V., Lobach, A.S., Kabachkov, E.N., Volfkovich, Yu.M., Sosenkin, V.E., Shulga, N.Yu., Nefedkin, S.I., Kumar, Y., and Michtchenko, A., Preparation of graphene oxide-humic acid composite-based ink for printing thin film electrodes for micro-supercapacitors, J. Alloys Compounds, 2018, vol. 730, p. 88.

    Article  CAS  Google Scholar 

  249. Shulga, Yu.M., Baskakov, S.A., Baskakova, Y.V., Lobach, A.S., Volfkovich, Yu. M., Sosenkin, V.E., Shulga, N.Yu., Parkhomenko, Y.N., Michtchenko, A., and Kumar., Y., Hybrid porous carbon materials derived from composite of humic acid, Microporous Mesoporous Mater., 2017, vol. 245, p. 24.

    Article  CAS  Google Scholar 

  250. Kryazhev, Yu.G., Volfkovich, Yu.M., Mel’nikov, V.P., Rychagov, A.Yu., Trenikhin, M.V., Solodovnichenko, V.S., and Likholobov, V.A., Synthesis and study of electrochemical properties of nanocomposites with graphene-like particles integrated into a high-porosity carbon matrix, Protection Metals Phys. Chem. Surfaces, 2017, vol. 53, p. 422.

    Article  CAS  Google Scholar 

  251. Shulga, Yu.M., Baskakov, S.A., Baskakova, Yu.V., Volfkovich, Yu.M., Shulga, N.Yu., Skryleva, E.A., Parkhomenko, Y.N., Belay, K.G., Gutsev, G.L., Rychagov, A.Y., Sosenkin, V.E., and Kovalev, I.D., Supercapacitors with graphene oxide separators and reduced graphite oxide electrodes, J. Power Sources, 2015, vol. 279, p. 722.

    Article  CAS  Google Scholar 

  252. Ke, Q. and Wang, J., Graphene-based materials for supercapacitor electrodes e A review, J. Materiomics, 2016, vol. 2, p. 37.

    Article  Google Scholar 

  253. Lee, H. and Lee, K.S., Interlayer distance controlled graphene, supercapacitor and method of producing the same, US Patent 10, 214, 422 B2, 2019.

  254. Yang, X., Cheng, C., Wang, Y., Qiu, L., and Li, D., Liquid-Mediated Dense Integration of Graphene Materials for Compact Capacitive Energy Storage, Science, 2013, vol. 341, p. 534.

    Article  CAS  PubMed  Google Scholar 

  255. Liu, H., Wang, Y., Gou, X., Qi, T., Yang, J., and Ding, Y., Three-dimensional graphene/polyaniline composite material for high-performance supercapacitor applications, Mater. Sci. Engineering B, 2013, vol. 178, p. 293.

    Article  CAS  Google Scholar 

  256. Aboutalebi, H., Chidembo, A.T., Salari, M., Konstantinov, K., Wexler, D., Liu, H.K., and Dou, S.X., Comparison of GO, GO/MWCNTs composite and MWCNTs as potential electrode materials for supercapacitors, Energy Environ. Sci., 2011, vol. 4, p. 1855.

    Article  CAS  Google Scholar 

  257. Zhong, M., Song, Y., Li, Y., Ma, C., Zhai, X., Shi, J., Guo, Q., and Liu, L., Effect of reduced graphene oxide on the properties of an activated carbon cloth/polyaniline flexible electrode for supercapacitor application, J. Power Sources, 2012, vol. 217, p. 6.

    Article  CAS  Google Scholar 

  258. Sun, D., Yan, X., Lang, J., and Xue, Q., High performance supercapacitor electrode based on graphene paper via flame-induced reduction of graphene oxide paper, J. Power Sources, 2013, vol. 222, p. 52.

    Article  CAS  Google Scholar 

  259. Zhou, Z. and Wu, X.F., Graphene-beaded carbon nanofibers for use in supercapacitor electrodes: Synthesis and electrochemical characterization, J. Power Sources, 2013, vol. 222, p. 410.

    Article  CAS  Google Scholar 

  260. Mohammadi, A., Arsalani, N., Tabrizi, A.G., Moosavifard, S.E., Naqshbandi, Z., and Ghadimi, L.S., Engineering rGO-CNT wrapped Co3S4 nanocomposites for high-performance asymmetric supercapacitors, Chem. Engineering J., 2018, vol. 334, p. 66.

    Article  CAS  Google Scholar 

  261. Smirnov, V.A., Denisov, N.N., Dremova, N.N., Volfkovich, Yu.M., Rychagov, A.Yu., Sosenkin, V.E., Belay, K.G., Gutsev, G.L., Shulga, N.Yu., and Shulga, Yu.M., A comparative analysis of graphene oxide films as proton conductors, Appl. Phys. A, 2014, vol. 117, p. 1859.

    Article  CAS  Google Scholar 

  262. Volfkovich, Yu.M, Lobach, A.S., Spitsyna, N.G., Baskakov, S.A., Sosenkin, V.E., Rychagov, A.Yu., Kabachkov, E.N., Sakars, A., Michtchenko, A., and Shulga, Yu.M., Hydrophilic and Hydrophobic Pores in Reduced Graphene Oxide Aerogel, J. Porous Mater. 2019, vol. 26, p. 1111.

    Article  CAS  Google Scholar 

  263. Guo, S., Li, H., Zhang, H., Hawaz, H., Chen, S., Zhang, X., and Xu, F., Lignin carbon aerogel/nickel binary network for cubic supercapacitor electrodes with ultra-high areal capacitance, Carbon, 2021, vol. 174, p. 500.

    Article  CAS  Google Scholar 

  264. Yang, Z., Tian, J., Yin, Z., Cui, C., Qian, W., and Wei, F., Carbon nanotube-and graphene-based nanomaterials and applications in high-voltage supercapacitor: A review, Carbon, 2019, vol. 141, p. 467.

    Article  CAS  Google Scholar 

  265. Shulga, Yu.M., Baskakov, S.A., Baskakova, Yu.V., Volfkovich, Yu. M., Shulga, N.Yu., Skryleva, E.A., Parkhomenko, Y.N., Belay, K.G., Gutsev, G.L., Rychagov, A.Yu. Sosenkin, V.E., and Kovalev, I.D., Supercapacitors with graphene oxide separators and reduced graphite oxide electrodes, J. Power Sources, 2015, vol. 279, p. 722.

    Article  CAS  Google Scholar 

  266. Liu, T., Zhang, F., Song, Y., and Li, Y., Revitalizing carbon supercapacitor electrodes with hierarchical porous structures, J. Mater. Chem. A, 2017, vol. 5, p. 17705.

    Article  CAS  Google Scholar 

  267. Yang, X., Li, Y., Zhang, P., Sun, L., Ren, X., and Mi, H., Hierarchical hollow carbon spheres: Novel synthesis strategy, pore structure engineering and application for micro-supercapacitor, Carbon, 2020, vol. 157, p. 70.

    Article  CAS  Google Scholar 

  268. Xia, K., Gao, Q., Jiang, J., and Hu, J., Hierarchical porous carbons with controlled micropores and mesopores for supercapacitor electrode materials, Carbon, 2008, vol. 46, p. 1718.

    Article  CAS  Google Scholar 

  269. Xu, H., Wang, L., Zhang, Y., Chen, Y., and Gao, S., Pore-structure regulation of biomass-derived carbon materials for an enhanced supercapacitor performance, Nanoscale, 2021, vol. 13, p. 10051.

    Article  CAS  PubMed  Google Scholar 

  270. Tang, Z., Li, X., Sun, T., Shen, S., Huixin, X., and Yang, J., Porous crumpled graphene with hierarchical pore structure and high surface utilization efficiency for supercapacitor, Microporous Mesoporous Mater., 2018, vol. 272, p. 40.

    Article  CAS  Google Scholar 

  271. Zhou, Y., Ren, X., Du, Y., Jiang, Y., Wan, J., and Ma, F., In-situ template cooperated with urea to construct pectin-derived hierarchical porous carbon with optimized pore structure for supercapacitor, Electrochim. Acta, 2020, vol. 355, 136801.

    Article  CAS  Google Scholar 

  272. Xing, W., Huang, C.C., Zhuo, S.P., Yuan, X., and Wang, G.Q., Hierarchical porous carbons with high performance for supercapacitor electrodes, Carbon, 2009, vol. 47, p. 1715.

    Article  CAS  Google Scholar 

  273. Yang, X., Zhao, S., Zhang, Z., Chi, Y., and Yang, C., Pore structure regulation of hierarchical porous carbon derived from coal tar pitch via pre-oxidation strategy for high-performance supercapacitor, J. Colloid Interface Sci., 2022, vol. 614, p. 298.

    Article  CAS  PubMed  Google Scholar 

  274. Li, Z., Cheng, A., Zhong, W., Ma, H., Si, M., Ye, X., and Li, Z., Facile fabrication of carbon nanosheets with hierarchically porous structure for high-performance supercapacitor, Microporous Mesoporous Mater., 2020, vol. 306, 110440.

    Article  CAS  Google Scholar 

  275. Kim, J., Eum, J.H., Kang, J., Kwon, O., Kim, H., and Kim, D.W., Tuning the hierarchical pore structure of graphene oxide through dual thermal activation for high-performance supercapacitor, Scientific reports, 2021, vol. 11, p. 2063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Zhang, X., Zhang, H., Li, C., Wang, K., Sun, X., and Ma, Y., Recent advances in porous graphene materials for supercapacitor applications, Rsc Advances, 2014, vol. 4, p. 45862.

    Article  CAS  Google Scholar 

  277. Chen, H., Liu, D., Shen, Z., Bao, B., Zhao, S., and Wu, L., Functional biomass carbons with hierarchical porous structure for supercapacitor electrode materials, Electrochim. Acta, 2015, vol. 180, p. 241.

    Article  CAS  Google Scholar 

  278. Volfkovich, Yu. M., Rychagov, A.Yu., and Sosenkin, V.E., Effect of the Porous Structure on the Electrochemical Characteristics of Supercapacitor with Nanocomposite Electrodes Based on Carbon Nanotubes and Resorcinol–Formaldehyde Xerogel, Russ. J. Electrochem., 2022, vol. 58, p. 730.

    Article  CAS  Google Scholar 

  279. Chang, B., Yin, H., Zhang, X., Zhang, S., and Yang, B., Chemical blowing strategy synthesis of nitrogen-rich porous graphitized carbon nanosheets: morphology, pore structure and supercapacitor application, Chem. Engineering J., 2017, vol. 312, p. 191.

    Article  CAS  Google Scholar 

  280. Lee, E.J., Lee, L., Abbas, M.A., and Bang, J.H., The influence of surface area, porous structure, and surface state on the supercapacitor performance of titanium oxynitride: implications for a nanostructuring strategy, Phys. Chem., 2017, vol. 19, p. 21140.

    CAS  Google Scholar 

  281. Luo, X., Chen, X., and Mo, Y., A review of charge storage in porous carbon-based supercapacitors, New Carbon Materials, 2021, vol. 36, p. 49.

    Article  CAS  Google Scholar 

  282. Zhang, X., Li, H., Zhang, K., Wang, Q., and Qin, B., Strategy for preparing porous graphitic carbon for supercapacitor: balance on porous structure and graphitization degree, J. Electrochem. Soc., 2018, vol. 165, p. A2084.

    Article  CAS  Google Scholar 

  283. Xie, L., Su, F., Xie, L., Guo, X., Wang, Z., and Kong, Q., Effect of pore structure and doping species on charge storage mechanisms in porous carbon-based supercapacitors, Mater. Chem. Front, 2020, vol. 4, p. 2610.

    Article  CAS  Google Scholar 

  284. Heo, Y.J., Lee, H.I., Lee, J.W., Park, M., and Rhee, K.Y., Optimization of the pore structure of PAN-based carbon fibers for enhanced supercapacitor performances via electrospinning, Composites Part B: Engng., 2019, vol. 161, p. 10.

    Article  CAS  Google Scholar 

  285. Lin, Z., Xiang, X., Peng, S., Jiang, X., and Hou, L., Facile synthesis of chitosan-based carbon with rich porous structure for supercapacitor with enhanced electrochemical performance, J. Electroanal. Chem., 2018, vol. 823, p. 563.

    Article  CAS  Google Scholar 

  286. Long, C., Jiang, L., Wu, X., Jiang, Y., Yang, D., and Wang, C., Facile synthesis of functionalized porous carbon with three-dimensional interconnected pore structure for high volumetric performance, Carbon, 2015, vol. 93, p. 412.

    Article  CAS  Google Scholar 

  287. Kim, T.Y., Jung, G., Yoo, S., Suh, K.S., and Ruoff, R.S., Activated graphene-based carbons as supercapacitor electrodes with macro-and mesopores, ACS Nano, 2013, vol. 7, p. 6899.

    Article  CAS  PubMed  Google Scholar 

  288. Hao, P., Zhao, Z., Tian, J., Li, H., Sang, Y., Yu, G., Cai, H., and Liu, H., Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode, Nanoscale, 2014, vol. 6, p. 12120.

    Article  CAS  PubMed  Google Scholar 

  289. Shimizu, T., Kobashi, K., and Nakajima, H., Supercapacitor Electrodes of Blended Carbon Nanotubes with Diverse Conductive Porous Structures Enabling High Charge/Discharge Rates, ACS Appl. Energy Mater., 2021, vol. 4, p. 9712.

    CAS  Google Scholar 

  290. Fisher, R.A., Watt, M.R., and Ready, W.J., Functionalized Carbon Nanotube Supercapacitor Electrodes: A Review on Pseudocapacitive Materials, J. Solid State Sci. Technol., 2013, vol. 2, p. 2 M3170.

  291. Zhang, Y., Chen, H., Wang, S., Zhao, X., and Kong, F., Regulatory pore structure of biomass-based carbon for supercapacitor applications, Microporous Mesoporous Mater., 2020, vol. 297, 110032.

    Article  CAS  Google Scholar 

  292. Liu, X., Li, S., Mi, R., Mei, J., Liu, L.M., Cao, L., Lau, W.M., and Liu, H., Porous structure design of carbon xerogels for advanced supercapacitor, Appl. Energy, 2015, vol. 153, p. 32.

    Article  CAS  Google Scholar 

  293. Zhi, M., Yang, F., Meng, F., and Li, M., Effects of pore structure on performance of an activated-carbon supercapacitor electrode recycled from scrap waste tires, ACS Sustainable Chem. Eng., 2014, vol. 2, p. 1592.

    Article  CAS  Google Scholar 

  294. Zhao, J., Lai, C., Dai, Y., and Xie, J., Pore structure control of mesoporous carbon as supercapacitor material, Mater. Lett., 2007, vol. 61, p. 4639.

    Article  CAS  Google Scholar 

  295. Jung, S.M., Mafra, D.L., Lin, C.T., Jung, H.Y., and Kong, J., Controlled porous structures of graphene aerogels and their effect on supercapacitor performance, Nanoscale, 2015, vol. 7, p. 4386.

    Article  CAS  PubMed  Google Scholar 

  296. Xiong, C., Li, B., Lin, X., Liu, H., Xu, Y., Mao, J., and Duan, C., The recent progress on three-dimensional porous graphene-based hybrid structure for supercapacitor, Composites Part B: Engng., 2019, vol. 165, p. 10.

    Article  CAS  Google Scholar 

  297. Celzard, A., Collas, F., Mareche, J.F., and Furdin, G., Porous electrodes-based double-layer supercapacitors: pore structure versus series resistance, J. Power Sources, 2002, vol. 108, p. 153.

    Article  CAS  Google Scholar 

  298. Song, M., Zhou, Y., Ren, X., Wan, J., Du, Y., and Wu, G., Biowaste-based porous carbon for supercapacitor: The influence of preparation processes on structure and performance, J. Colloid Interface Sci., 2019, vol. 535, p. 276.

    Article  CAS  PubMed  Google Scholar 

  299. Gang, B., Zhang, F., Li, X., Zhai, B., Wang, X., and Song, Y., A lactuca-derived porous carbon for high-performance electrode materials in supercapacitor: Synergistic effect of porous structure and graphitization degree, J. Energy Storage, 2021, vol. 33, 102132.

    Article  Google Scholar 

  300. Borchardt, L., Oschatz, M., and Kaskel, S., Materials Horizons, Tailoring porosity in carbon materials for supercapacitor applications, Mater. Horiz., 2014, vol. 1, p. 157.

    Article  CAS  Google Scholar 

  301. Snook, G.A., Kao, P., and Best, A.S., Conducting-polymer-based supercapacitor devices and electrodes, J. Power Sources, 2011, vol. 196, p. 1.

    Article  CAS  Google Scholar 

  302. Peng, C., Zhang, S., Jewell, D., and Chen, G.Z., Carbon nanotube and conducting polymer composites for supercapacitors, Progress Natural Sci., 2008, vol. 8, p. 777.

    Article  Google Scholar 

  303. Huang, Z., Li, L., Wang, Y., Zhang, C., and Liu, T., Polyaniline/graphene nanocomposites towards high-performance supercapacitors: A review., Composites Commun., 2018, vol. 8, p. 83.

    Article  Google Scholar 

  304. Wang, J., Xu, Y., Chen, X., and Sun, X., Capacitance properties of single wall carbon nanotube/polypyrrole composite films, Composit. Sci. and Technol., 2007, vol. 67, p. 2981.

    Article  CAS  Google Scholar 

  305. Kim, B.C., Kwon, J.S., Ko, J.M., Park, J.H., Too, C.O., and Wallace, G.G., Preparation and enhanced stability of flexible supercapacitor prepared from Nafion/polyaniline nanofiber, Synthetic Metals, 2010, vol. 160, p. 94.

    Article  CAS  Google Scholar 

  306. Cong, H.P., Ren, X.C., Wang, P., and Yu, S.H., Flexible graphene–polyaniline composite paper for high-performance supercapacitor, Energy Environ. Sci., 2013, vol. 6, p. 1185.

    Article  CAS  Google Scholar 

  307. Qin, W., Jian-ling, L., Fei, G., Wen-sheng, L., Ke-zhong, W., and Xin-dong, W. Poly(ethylenedioxythiophene) (PEDOT) as polymer electrode in redox supercapacitor, New Carbon Materials, 2008, vol. 1, p. 275.

    Google Scholar 

  308. Cai, J.J., Kong, L.B., Zhang, J., Luo, Y.C., and Kang, L., A novel polyaniline/mesoporous carbon nano-composite electrode for asymmetric supercapacitor, Chinese Chem. Lett., 2010, vol. 21, p. 1509.

    Article  CAS  Google Scholar 

  309. Yang, M., Cheng, B., Song, H., and Chen, X., Preparation and electrochemical performance of polyaniline-based carbon nanotubes as electrode material for supercapacitor, Electrochim. Acta, 2010, vol. 55, p. 7021.

    Article  CAS  Google Scholar 

  310. Fang, Y., Liu, J., Yu, D.J., Wicksted, J.P., Kalkan, K., Topal, C.Q., Flanders, B.N., Wu, J., and Li, J., Self-supported supercapacitor membranes: Polypyrrole-coated carbon nanotube networks enabled by pulsed electrodeposition, J. Power Sources, 2010, vol. 195, p. 674.

    Article  CAS  Google Scholar 

  311. Vorotyntsev, M.A., Konev, D.V., Devillers, Ch.H., Bezverkhyy, I., and Heintz, O., Electroactive polymeric material with condensed structure on the basis of magnesium(II) polyporphine, Electrochim. Acta, 2011, vol. 56, p. 3436.

    Article  CAS  Google Scholar 

  312. Volfkovich, Yu. M., Zolotova, T.K., Bobe, S.L., Shlepakov, A.V., and Bagotsky, V.S., Influence of porous structure, interfacial capacitance, kinetic and diffusion characteristics on discharge and charging curves of polyaniline electrodes, Russ. J. Electrochem., 1993, vol. 29, p. 1094.

  313. Volfkovich, Yu.M., Bagotzky, V.S., Zolotova, T.K., and Pisarevskaya, E.Yu., The influence of the porous structure, microkinetics and diffusion properties on the charge-discharge behaviour of conducting polymers, Electrocim. Acta, 1996, vol. 41, p.1905.

    Article  CAS  Google Scholar 

  314. Volfkovich, Yu. M., Levi, M.D., Zolotova, T.K., and Pisarevskaya, E.Yu., Porous structure of electrosynthesized poly(p-phenylene) films characterized by the standard porosimetry technique, Polymer Commun., 1993, vol. 34, p. 2443.

    Article  CAS  Google Scholar 

  315. Korosy, F., Physics of ionites, Nature, 1963, vol. 198, p. 4883.

    Google Scholar 

  316. Gnusin, N.P., Grebenyk, V.D., and Pevnitskaya, M.V., Ionits Electrochemistry (in Russian), Novosibirsk: Nauka, 1972,

    Google Scholar 

  317. Riande, E., Transport Phenomena in Ion-exchange Membranes, Academic Press,1972

    Google Scholar 

  318. Helferich, F., Ionenaustauscher, Weinheimm Verlag Chemie, 1959.

    Google Scholar 

  319. Volfkovich, Yu.M., Luzhin, V.K., Vanyulin, A.N., Shkolnikov, E.I., and Blinov, I.A., Application of the standard porosimetry method for investigation of ion-exchange membranes porous structure, Sov. Electrochem., 1984, vol. 20, p. 613.

    Google Scholar 

  320. Volfkovich, Yu.M., The influence of electric double layer at inner interphase surface of ion-exchange membrane on its electrochemical and sorption properties, Sov. Electrochem., 1984, vol. 20, p. 664.

    Google Scholar 

  321. Damaskin, B.B., Petry, O.A., and Tzirlina, G.A., Electrochemistry (in Russian), Moscow: Khimiya, 2001.

    Google Scholar 

  322. Dukhin, S.S., Electrical Conductivity and Electrokinetic Properties of Dispersed Systems (in Russian), Kiev: Naukova dumka, 1975.

    Google Scholar 

  323. Karnaukhov, A.P., in: Modeling of Porous Materials (in Russian), Novosibirsk: Institute of Catalysis. 1976.

    Google Scholar 

  324. Zabolotskii, V.I. and Nikonenko, V.V., Ion Transfer in Membranes (in Russian), Moscow: Nauka, 1996.

    Google Scholar 

  325. Kardash, M.M., Shkabara, A.I., and Pavlov, A.V., Production of sheet fibrous chemisorption filters “Polikon” (in Russian), Chem. Fibers, 2007, no. 1, p. 30.

  326. Kononenko, N.A., Berezina, N.P., Volfkovich, Yu.M., Shkol’nikov, E.I., and Blinov, I.A., Investigation of ion-exchange materials structure by standard porosimetry method, J. Appl. Chem. USSR, 1985, vol. 58, p. 2029.

    Google Scholar 

  327. Berezina, N.P., Kononenko, N.A., Volfkovich, Yu.M., Freidlin, Yu.G., and Chernoskutova, L.G., Physicochemical Properties of Mosaic Membranes Exchanging Anions and Cations, Russ. J. Electrochem., 1989, vol. 25, p. 912.

    Google Scholar 

  328. Gnusin, N.P., Berezina, N.P., Demina, O.A., and Kononenko, N.A., Physicochemical Principles of Testing Ion-Exchange Membranes, Russ. J. Electrochem., 1996, vol. 32, p. 154.

    CAS  Google Scholar 

  329. Volkov, V.V., Mchedlishvili, B.V., Roldugin, V.I., Ivanchev, S.S., and Yaroslavtsev, A.B., A Review, Nanotechnologies in Russia, 2008, vol. 3, p. 656.

    Article  Google Scholar 

  330. Rica, R.A., Ziano, R., Salerno, D., Mantegazza, F., and Brogioli, D., Thermodynamic Relation between Voltage-Concentration Dependence and Salt Adsorption in Electrochemical Cells, Phys. Rev. Lett, 2012, vol. 109, 156103.

    Article  CAS  PubMed  Google Scholar 

  331. Farmer, J.C., Fix, D.V., Mack, G.V., Pekala, R.W., and Poco, J.F., The Use of Capacitive Deionization with Carbon Aerogel Electrodes to Remove Inorganic Contaminants from Water, Low Level Waste Conference, Orlando, USA (1995).

  332. Oren, Y., Desalination. Capacitive deionization (CDI) for desalination and water treatment is the past, present and future (a review), Desalination, 2008, vol. 228, p. 1.

    Article  Google Scholar 

  333. Strathmann, H., Ion-Exchange Membrane Processes in Water Treatment Sustainability Scienceand Engineering, Elsevier Pabl., 2010. 498 p.

    Google Scholar 

  334. Avraham, E., Noked, M., Bouhadana, Y., Soffer, A., and Aurbach, D., Limitations of charge efficiency in capacitive deionization II. On the behavior of cdi cells comprising two activated carbon electrodes, J. Electrochem. Soc., 2009, vol. 156, p.157.

    Article  Google Scholar 

  335. Suss, M.E., Baumann, T.F., Bourcier, W.L., Spadaccini, C.M., Rose, K.A., Santiago, J.G., and Stadermann, M., Capacitive desalination with flow-through electrodes, Energy Environ. Sci., 2012, vol. 5, p. 9511.

    Article  CAS  Google Scholar 

  336. Rica, R.A., Ziano, R., Salerno, D., Mantegazza, F., and Brogioli, D., Thermodynamic Relation between Voltage-Concentration Dependence and Salt Adsorption in Electrochemical Cells, Phys. Rev. Lett, 2012, vol. 109, 156103.

    Article  CAS  PubMed  Google Scholar 

  337. Porada, S., Zhao R., Van Der Wal, A., Presser, V., and Biesheuvel, P.M., Review on the science and technology of water desalination by capacitive deionization, Prog. Mater. Sci., 2013, vol. 58, p. 1388.

    Article  CAS  Google Scholar 

  338. Jande, Y.A.C. and Kim, W.S., Desalination using capacitive deionization at constant current, Desalination, 2013, vol. 329, p. 29.

    Article  CAS  Google Scholar 

  339. Soffer, A. and Folman, M., The electrical double layer of high surface porous on carbon electrode, J. Electroanal. Chem., 1972, vol. 38, p. 25.

    Article  CAS  Google Scholar 

  340. Li, H., Pan, L., Lu, T., Zhan, Y., Nie, C., and Sun, Z., A comparative study on electrosorptive behavior of carbon nanotubes and graphene for capacitive deionization, J. Electroanal. Chem., 2011, vol. 653, p. 40.

    Article  CAS  Google Scholar 

  341. Volfkovich, Yu.M., Capacitive Deionization of Water (A Review), Russ. J. Electrochem., 2020, vol. 56, p. 18.

    Article  CAS  Google Scholar 

  342. Ma, X., Wang, H., Wu, Q., Zhang, J., Liang, D., Lu, S., and Xiang, Y., Bamboo like Carbon Microfibers Derived from Typha Orientalis Fibers for Supercapacitors and Capacitive Deionization, J. Electrochem. Soc., 2019, vol. 166(2), p. A236.

    Article  CAS  Google Scholar 

  343. Zhao, R., Porada, S., Biesheuvel, P.M., and van der Wal, A., Energy consumption in membrane capacitive deionization for different water recoveries and flow rates, and comparison with reverse osmosis, Desalination, 2013, vol. 330, p. 35.

    Article  CAS  Google Scholar 

  344. Kang, J., Kim,T, Jo, K, and Yoon, J., Comparison of salt adsorption capacity and energy consumption between constant current and constant voltage operation in capacitive deionization, Desalination, 2014, vol. 352, p. 52.

    Article  CAS  Google Scholar 

  345. Kim, T., Dykstra, J.E., Porada, S., Yoon, J., and Biesheuvel, P.M., Enhanced charge efficiency and reduced energy use in capacitive deionization by increasing the discharge voltage, J. Colloid Interface Sci., 2015, vol. 446, p. 317.

    Article  CAS  PubMed  Google Scholar 

  346. Yang, Li., She, J., Jiansheng, Li., Sun, X., Shen, J., Han, W., and Wang, L., A protic salt-derived porous carbon for efficient capacitive deionization: Balance between porous structure and chemical composition, Carbon, 2017, vol. 116, p. 21.

    Article  Google Scholar 

  347. Krüner, B., Srimuk, P., Fleischmann, S., Zeiger, M., Schreiber, A., Aslan, M., Quade, A., and Volker, P., Hydrogen-treated, sub-micrometer carbon beads for fast capacitive deionization with high performance stability, Carbon, 2017, vol. 117, p. 46.

    Article  Google Scholar 

  348. Choi, S., Chang, B., Kang, J.H., Diallo, M.S., and Choi, J.W., Energy-efficient hybrid FCDI-NF desalination process with tunable salt rejection and high water recovery, J. Membrane Sci., 2017, vol. 541, p. 580.

    Article  CAS  Google Scholar 

  349. Andelman, M., Flow Through Capacitor basics, Separation and Purification Technol., 2011, vol. 80, p. 262.

    Article  CAS  Google Scholar 

  350. Anderson, M.A., Cudero, A.L., and Palma, J., Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete? Electrochim. Acta, 2010, vol. 55, p. 3845.

    Article  CAS  Google Scholar 

  351. Liu, S., Kyle, C., and Smith, K.C., Quantifying the Trade between Energy Consumption and Salt Removal in Membrane-free Cation Intercalation Desalination, Electrochim. Acta, 2017, vol. 230, p. 333.

    Google Scholar 

  352. Yang, S.C., Choi, J., Yeo, J., Jeon, S., Park, H., and Kim, D.K., Flow-Electrode Capacitive Deionization Using an Aqueous Electrolyte with a High Salt Concentration, Environ. Sci. Technol., 2016, vol. 50, p. 5892.

    Article  CAS  PubMed  Google Scholar 

  353. Biesheuvel, P.M., Bazant, M.Z., Cusick, R.D., Hatton, T.A., Hatzell, K.B., Hatzell, M.C., Liang, P., Lin, S., Porada, S., Santiago, J.G., Smith, K.C., Stadermann, M., Su, X., Sun, X., Waite, T.D., van der Wal, A., Yoon, J., Zhao, R., Zou, L., and Suss, M.E., Capacitive Deionization–defining a class of desalination technologies, Appl. Phys., 2017, vol. 16, p. 19.

    Google Scholar 

  354. Tang, W., He, D., Zhang, C.T., and Waite, D., Optimization of sulfate removal from brackish water by membrane capacitive deionization, Water Res., 2017, vol. 121, p. 302.

    Article  CAS  PubMed  Google Scholar 

  355. Hassanvand, A., Chen, G.Q, Webley, P.A., and Kentish, S.E., Improvement of MCDI operation and design through experiment and modelling: Regeneration with brine and optimum residence time, Desalination, 2017, vol. 417, p. 36.

    Article  CAS  Google Scholar 

  356. Kim, J.-S. and Choi, J.-H., Fabrication and characterization of a carbon electrode coated with cation-exchange polymer for the membrane capacitive deionization applications J. Membr. Sci., 2010, vol. 355, p. 85.

    Article  CAS  Google Scholar 

  357. Lee, J.-H. and Choi, J.-H., The production of ultrapure water by membrane capacitive deionization (MCDI) technology, J. Membr. Sci., 2012, vols. 409–410, p. 251.

    Article  Google Scholar 

  358. Li, H. and Zou, L., Ion-exchange membrane capacitive deionization: a new strategy for brackish water desalination, Desalination, 2011, vol. 275, p. 62.

    Article  CAS  Google Scholar 

  359. Biesheuvel, P.M., Zhao, R., Porada, S., and van der Wal, A., Theory of membrane capacitive deionization including the effect of the electrode pore space, J. Colloid Interface Sci., 2011, vol. 360, p. 239.

    Article  CAS  PubMed  Google Scholar 

  360. Zhao, R., Satpradit, O., Rijnaarts, H.M., Biesheuvel, P.M., and van der Wal, A., Optimization of salt adsorption rate in membrane capacitive deionization, Water Res., 2013, vol. 147, p. 1941.

    Article  Google Scholar 

  361. Biesheuvel, P.M. and van der Wal, A., Membrane capacitive deionization J. Membr. Sci., 2010, vol. 346, p. 256.

    Article  CAS  Google Scholar 

  362. Gao, X., Omosebi, A., Holubowitch, N., Liua, A, Ruha, K., Landon, J., and Liu, K., Polymer-coated composite anodes for efficient and stable capacitive deionization, Desalination, 2016, vol. 399, p. 16.

    Article  CAS  Google Scholar 

  363. Wang, Z., Gong, H., Zhang, Y., Liang, P., and Wang, K., Nitrogen recovery from low-strength wastewater by combined membrane capacitive deionization (MCDI) and ion exchange (IE) process, Chem. Engineering J., 2017, vol. 316, p. 1.

    Article  CAS  Google Scholar 

  364. Singha, K., Poradab, S., de Gierb, H.D., Biesheuvel, P.M., and de Smeta, L.C.P.M., Timeline on the application of intercalation materials in Capacitive Deionization, Desalination, 2019, vol. 455, p. 115.

    Article  Google Scholar 

  365. Kang, J., Kima, T., Shin, T., Lee, J., Ha, J.-I., and Yoon, J., Direct energy recovery system for membrane capacitive deionization, Desalination, 2016, vol. 398, p. 144.

    Article  CAS  Google Scholar 

  366. Dykstra, J.E., Zhao, R., Biesheuvel, P.M., and van der Wal, A., Resistance identification and rational process design in Capacitive Deionization, Water Res., 2016, vol. 88, p. 358.

    Article  CAS  PubMed  Google Scholar 

  367. Bian, Y., Liang, P., Yang, X., Jiang, X., Zhang, C., and Huang, X., Using activated carbon fiber separators to enhance the desalination rate of membrane capacitive deionization, Desalination, 2016, vol. 381, p. 95.

    Article  CAS  Google Scholar 

  368. Dykstra, J.E., Keesman, K.J., Biesheuvel, P.M., and van der Wal, A., Theory of pH changes in water desalination by capacitive deionization, Water Res., 2017, vol. 119, p. 178.

    Article  CAS  PubMed  Google Scholar 

  369. Tang, W., He, D., Zhang, C., Kovalsky, P., and Waite, T.D., Comparison of Faradaic reactions in capacitive deionization (CDI) and membrane capacitive deionization (MCDI) water treatment processes, Water Res., 2017, vol. 120, p. 229.

    Article  CAS  PubMed  Google Scholar 

  370. Tang, W., He, D., Zhang, C., and Waite, T.D., Optimization of sulfate removal from brackish water by membrane capacitive deionization, Water Res., 2017, vol. 121, p. 302.

    Article  CAS  PubMed  Google Scholar 

  371. Hassanvand, A., Chen, G.Q., Webley, P.A., and Kentish, S.E., Improvement of MCDI operation and design through experiment and modelling: Regeneration with brine and optimum residence time, Desalination, 2017, vol. 417, p. 36.

    Article  CAS  Google Scholar 

  372. Rommerskirchena, A., Ohsb, B., Hepp, K.A., Femmer, R., and Wessling, M., Modeling continuous flow-electrode capacitive deionization processes with ion-exchange membranes, J. Membrane Sci., 2018, vol. 546, p. 188.

    Article  Google Scholar 

  373. Starthman, H., Ion-exchange membrane processes: their principle and practical applications, Balaban Desalination Publ., Stuttgart, Germany. 2016. 488 p.

    Google Scholar 

  374. Bian, Y., Yang, X., Liang, P., Jiang, Y., Zhang, C., and Huang, X., Enhanced desalination performance of membrane capacitive deionization cells by packing the flow chamber with granular activated carbon, Water Res., 2015, vol. 85, p. 371.

    Article  CAS  PubMed  Google Scholar 

  375. Zhao, Y., Wang, Y., Wang, R., Wu, Y., Xu, S., and Wang, J., Performance comparison and energy consumption analysis of capacitive deionization and membrane capacitive deionization processes. Review, Desalination, 2013, vol. 324, p. 127.

    Article  CAS  Google Scholar 

  376. Zhao, Y., Wang, Y., Wang, R., Wu, Y., Xu, S., and Wang J., Energy consumption in membrane capacitive deionization for different water recoveries and flow rates, and comparison with reverse osmosis, Desalination, 2013, vol. 330, p. 35.

    Article  CAS  Google Scholar 

  377. He, F., Biesheuvel, P.M., Bazant, M.Z., and Hatton, T.A., Theory of water treatment by capacitive deionization with redox active porous electrodes, Water Res., 2018, vol. 132, p. 282.

    Article  CAS  PubMed  Google Scholar 

  378. Achilleos, D.S. and Hatton, T.A., Selective molecularly mediated pseudocapacitive separation of ionic species in solution, ACS Appl. Mater. Interfaces, 2016, vol. 8, p. 32743.

    Article  CAS  PubMed  Google Scholar 

  379. Su, X. and Hatton, T.A., Electrosorption at functional interfaces: from molecularlevel interactions to electrochemical cell design, Phys. Chem. Chem. Phys., 2017, vol. 19, p. 23570.

    Article  CAS  PubMed  Google Scholar 

  380. Su, X. and Hatton, T.A., Redox-electrodes for selective electrochemical separations, Adv. Colloid Interface Sci., 2017, vol. 244, p. 6.

    Article  CAS  PubMed  Google Scholar 

  381. Su, X., Hübner, J., Kauke, M.J., Dalbosco, L., Thomas, J., Gonzalez, C.C., Zhu, E., Franzreb, M., Jamison, T.F., and Hatton, T.A., Redox interfaces for electrochemically controlled protein-surface interactions: bioseparations and heterogeneous enzyme catalysis, Chem. Mater., 2017, vol. 29, p. 5702.

    Article  CAS  Google Scholar 

  382. Su, X., Kulik, H.J., Jamison, T.F., and Hatton, T.A., Anion-selective redox electrodes: electrochemically mediated separation with heterogeneous organometallic interfaces, Adv. Funct. Mater., 2016, vol. 26, p. 3394.

    Article  CAS  Google Scholar 

  383. Su, X., Tan, K.-J., Elbert, J., Rüttiger, C., Gallei, M., Jamison, T.F., and Hatton, T.A., Asymmetric Faradaic systems for selective electrochemical separations, Energy Environ. Sci., 2017, vol. 10, p. 1272.

    Article  CAS  Google Scholar 

  384. Smith, K.C., Theoretical evaluation of electrochemical cell architectures using cation intercalation electrodes for desalination, Electrochim. Acta, 2017, vol. 230, p. 333.

    Article  CAS  Google Scholar 

  385. Liu, S. and Smith, K.S., Quantifying the trade-offs between energy consumption and salt removal rate in membrane-free cation intercalation desalination, Electrochim. Acta, 2018, vol. 271, p. 652.

    Article  CAS  Google Scholar 

  386. Porada, S., Shrivastava, A., Bukowska, P., Biesheuvel, P.M., and Smith, K.S., Nickel Hexacyanoferrate Electrodes for Continuous Cation Intercalation Desalination of Brackish Water, Electrochim. Acta, 2017, vol. 255, p. 369.

    Article  CAS  Google Scholar 

  387. Yang, S.C., Choi, J., Yeo, J., Jeon, S., Park, H., and Kim, D.K., Flow-electrode capacitive deionization using an aqueous electrolyte with a high salt concentration, Environ. Sci. Technol., 2016, vol. 50, p. 5892.

    Article  CAS  PubMed  Google Scholar 

  388. Guyes, E.N., Shocron, A.N., Simanovski, A., Biesheuvel, P.M., and Suss, M.E., A one-dimensional model for water desalination by flow-through electrode capacitive deionization, Desalination, 2017, vol. 415, p. 8.

    Article  CAS  Google Scholar 

  389. Gendel, G., Klara, A., Rommerskirchen, E., David, O., and Wessling, M., Batch mode and continuous desalination of water using flowing carbon deionization (FCDI) technology Electrochem. Commun., 2014, vol. 46, p. 152.

    Article  CAS  Google Scholar 

  390. Wang, M., Hou, S., Liu, Y., Ting, X., Zhao, L.R., and Pan, L., Capacitive neutralization deionization with flow electrodes, Electrochim. Acta, 2016, vol. 2016, p. 211.

    Google Scholar 

  391. Nativ, P., Badash, Y., and Gendel, Y., New insights into the mechanism of flow-electrode capacitive deionization, Electrochem. Commun., 2017, vol. 76, p. 24.

    Article  CAS  Google Scholar 

  392. Choo, K.Y., Yoo, C.Y., Han, M.H., and Kim, D.K., Electrochemical analysis of slurry electrodes for flow-electrode capacitive deionization, J. Electroanal. Chem., 2017, vol. 806, p. 50.

    Article  CAS  Google Scholar 

  393. Yang, S.C., Choi, J., Yeo, J., Jeon, S., Park, H., and Kim, D. K., Flow-Electrode Capacitive Deionization Using an Aqueous Electrolyte with a High Salt Concentration, Environ. Sci. Technol., 2016, vol. 50, p. 5892.

    Article  CAS  PubMed  Google Scholar 

  394. Kim, T., Dykstra, J.E., Porada, S., van der Wal, A., Yoon, J., and Biesheuvel, P.M., Enhanced charge efficiency and reduced energy use in capacitive deionization by increasing the discharge voltage, J. Colloid Interface Sci., 2015, vol. 446, p. 317.

    Article  CAS  PubMed  Google Scholar 

  395. Hatzel, K.B., Iwama, E., Ferris, A., Daffos, B., Uritab, K., Tzedakisc, T., Chauvet, F., Taberna, P-L, Gogotsi, Y., and Simon, P., Capacitive deionization concept based on suspension electrodes without ion exchange membranes, Electrochem. Commun., 2014, vol. 43, p. 18.

    Article  Google Scholar 

  396. Gendel, G., Klara, A., Rommerskirchen, E., David, O., and Wessling, M., Batch mode and continuous desalination of water using flowing carbon deionization (FCDI) technology, Electrochem. Commun., 2014, vol. 46, p. 152.

    Article  CAS  Google Scholar 

  397. Lu, D., Cai, W., and Wang, Y., Optimization of the voltage window for long-term capacitive deionization stability, Desalination, 2017, vol. 424, p. 53.

    Article  CAS  Google Scholar 

  398. Volfkovich, Yu. M., Bograchev, D.A., Mikhalin, A.A., Rychagov, A.Yu., Sosenkin,V.E., and Park, D.C., Capacitive deionization of aqueous solutions. modeling and experiments, Desalination and water treatment, 2017, vol. 69, p. 130.

    Article  CAS  Google Scholar 

  399. Volfkovich, Yu. M., Mikhalin, A.A., and Rychagov, A.Yu., Surface Conductivity Measurements for Porous Carbon Electrodes, Russ. J. Electrochem., 2013, vol. 49, p. 594.

    Article  CAS  Google Scholar 

  400. Volfkovich, Yu.M., Rychagov, A.Yu., Mikhalin, A.A., Kardash, M.M., Kononenko, N.A., Ainetdinov, D.V., Shkirskaya, S.A., and Sosenkin, V.E., Capacitive deionization of water using mosaic membrane, Desalination, 2018, vol. 426, p. 1.

    Article  CAS  Google Scholar 

  401. Volfkovich, Yu.M., Kononenko, N.A., Mikhalin, A.A., Kardash, M.M., Rychagov, A.Yu., Tsipliaev, S.V., Shkirskaya, S.A., and Sosenkin, V.E., Capacitive deionization of water involving mosaic membranes based on fibrous polymer matrices, Desalination and water treatment, 2020, vol. 182, p. 77.

    Article  CAS  Google Scholar 

  402. Volfkovich, Yu.M., Mikhalin, A.A., Rychagov, A.Yu., and Kardash, M.M., Capacitive Deionization of Water with Electrodes Based on Nanoporous Activated Carbon and a Mosaic Cation-Anion Exchange Membrane, Protection of Metals Phys. Chem. Surfaces, 2021, vol. 57, p. 68.

    Article  CAS  Google Scholar 

  403. Kohli, D.K., Bhartiya, S., Singh, A., Singh, R., Singh, M.K., and Gupta, P.K., Capacitive deionization of ground water using carbon aerogel based electrodes, Desalination and water treatment, 2016, vol. 57, p. 1.

    Article  Google Scholar 

  404. Xu, X., Liu, Y., Wang, M., Zhu, C., Lu, T., Zhao, R., and Pan, L., Hierarchical hybrids with microporous carbon spheres decorated three-dimensional graphene frameworks for capacitive applications in supercapacitor and deionization, Electrochim. Acta, 2016, vol. 193, p. 88.

    Article  CAS  Google Scholar 

  405. Zhao, S., Yan, T., Wang, H., Chen, G., Huang, L., Zhang, J., Shi, L., and Zhang, D., High capacity and high rate capability of nitrogen-doped porous hollow carbon spheres for capacitive deionization, Appl. Surface Sci., 2016, vol. 369, p. 460.

    Article  CAS  Google Scholar 

  406. Li, J., Ji, B., Jiang, R., Zhang, P., Chen, N., Zhang, G., and Qu, L., Hierarchical hole-enhanced 3D graphene assembly for highly efficient capacitive deionization, Carbon, 2018, vol. 129, p. 95.

    Article  CAS  Google Scholar 

  407. Feng, J., Yang, Z., Hou, S., Li, M., Lv, R., Kanga, F., and Huang, Z.-H., GO/auricularia-derived hierarchical porous carbon used for capacitive deionization with high performance, Colloids and Surfaces A: Physicochem. Engng. Aspects, 2018, vol. 547, p. 134.

    Article  CAS  Google Scholar 

  408. Cao, J., Wang, Y., Chen, C., Yu, F., and Ma, J., A Comparison of graphene hydrogels modified with single-walled/multi-walled carbon nanotubes as electrode materials for capacitive deionization, J. Colloid Interface Sci., 2018, vol. 518, p. 69.

    Article  CAS  PubMed  Google Scholar 

  409. Kim, C., Srimuk, P., Lee, J., Fleischmann, S., Aslan, M., and Presser, V., Influence of pore structure and cell voltage of activated carbon cloth as a versatile electrode material for capacitive deionization, Carbon, 2017, vol. 122, p. 329.

    Article  CAS  Google Scholar 

  410. Chena, Z., Zhang, H., Wu, C., Luo, L., Wang, C., Huang, S., and Xu, H., A study of the effect of carbon characteristics on capacitive deionization (CDI) performance, Desalination, 2018, vol. 433, p. 68.

    Article  Google Scholar 

  411. Li, G.X., Hou, P.X., Zhao, S.Y., Chang, Liu, and Cheng, H.M., A flexible cotton-derived carbon sponge for high-performance capacitive deionization, Carbon, 2016, vol. 101, p. 1.

    Article  CAS  Google Scholar 

  412. Xu, P., Jorg, E., Drewes, J.E., Heil, D., and Wang, G., Treatment of brackish produced water using carbon aerogel-based capacitive deionization technology, Water Res., 2008, vol. 42, p. 2605.

    Article  CAS  PubMed  Google Scholar 

  413. Zornitta, R.L., Lado, J.J., Anderson, M.A., Luís, and Ruotolo, A.M., Effect of electrode properties and operational parameters on capacitive deionization using low-cost commercial carbons, Separation Purification Technol., 2016, vol. 158, p. 39.

    Article  CAS  Google Scholar 

  414. Li, H., Zou, L., Pan, L., and Sun, Z., Using graphene nano-flakes as electrodes to remove ferric ions by capacitive deionization, Separation Purification Technol., 2010, vol. 75, p. 8.

    Article  CAS  Google Scholar 

  415. Nadakatti, S., Tendulkar, M., and Kadam, M., Use of mesoporous conductive carbon black to enhance performance of activated carbon electrodes in capacitive deionization technology, Desalination, 2011, vol. 268, p. 182.

    Article  CAS  Google Scholar 

  416. Wang, L., Wang, M., Huang, Z.-H., Cui, T., Gui, X., Kang, F., Wang, K., and Wu, D., Capacitive deionization of NaCl solutions using carbon nanotube sponge electrodes, J. Mater. Chem., 2011, vol. 21, p. 18295.

    Article  CAS  Google Scholar 

  417. Zhang, D., Wen, X., Shi, L., Yan, Tingting, and Zhang, J., Enhanced capacitive deionization of graphene/mesoporous carbon composites, Nanoscale, 2012, vol. 4, p. 5440.

    Article  CAS  PubMed  Google Scholar 

  418. Wang, G., Dong, Q., Ling, Z., Pan, C., Yu, C., and Qiu, J., Hierarchical activated carbon nanofiber webs with tuned structure fabricated by electrospinning for capacitive deionization, J. Mater. Chem., 2012, vol. 22, p. 21819.

    Article  CAS  Google Scholar 

  419. Wen, X., Zhang, D., Shi, L., Yan, T., Wang, H., and Zhang, H., Three-dimensional hierarchical porous carbon with a bimodal pore arrangement for capacitive deionization, J. Mater. Chem., 2012, vol. 22, p. 23835.

    Article  CAS  Google Scholar 

  420. Volfkovich, Yu. M., Bograchev, D.A., Mikhalin, A.A., Rychagov, A.Yu., Sosenkin, V.E., Milyutin, V.V., and Park, D., Electrodes Based on Carbon Nanomaterials: Structure, Properties and Application to Capacitive Deionization in Static Cells. Chapter 9. Nano-Optics, Nanophotonics, Nanomaterials, and Their Applications, Eds, Fesenko, O. and Fesenko, L., Springer, 2018, p. 127.

  421. Volfkovich, Yu.M., Capacitive deionization of water (review). In book: Membrane and Sorption Materials and Technologies: Present and Future, Dzyazko, Yu.S., Plisko, Y.V., and Chabam, M.O., Eds., 2018, p. 79.

    Google Scholar 

  422. Zornitta, R.L., García-Mateos, F.J., Lado, J.J., Rodríguez-Mirasol, J., Cordero, T., Hammer, P., and Ruotolo, L.A.M., Study of sugar cane bagasse fly ash as electrode material for capacitive deionization, J. Analyt. Appl. Pyrolysis, 2016, vol. 120, p. 389.

    Article  Google Scholar 

  423. Zornitta, R.L., García-Mateos, F.J., Lado, J.J., Rodríguez-Mirasol, J., Cordero, T., Hammer, P., and Ruotolo, L.A.M., High-performance activated carbon from polyaniline for capacitive deionization, Carbon, 2017, vol. 123, p. 318.

    Article  CAS  Google Scholar 

  424. Lu, G., Wang, G., Wang, P.-H., Yang, Z., Yana, Ni W., Zhang, L., and Yan, W.M., Enhanced capacitive deionization performance with carbon electrodes prepared with a modified evaporation casting method, Desalination, 2016, vol. 386, p. 32.

    Article  CAS  Google Scholar 

  425. Ahn, H.J., Lee, J.-H., Jeong, Y., Lee, J.-H., Chi, C.-S., and Oh, H.-J., Nanostructured carbon cloth electrode for desalination from aqueous solutions, Mater. Sci. Engng. A, 2007, vol. 449, p. 841.

    Article  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Sciences and Higher Education of the Russian Federation under the State Contract no. АААА-А19-119041890032-6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. M. Volfkovich.

Ethics declarations

The author declares that he has no conflict of interest.

Additional information

Translated by Yu. Pleskov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volfkovich, Y.M. The Effect of Structure of Porous Components of Electrochemical Devices on Their Characteristics (A Review). Russ J Electrochem 59, 347–418 (2023). https://doi.org/10.1134/S1023193523050038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193523050038

Keywords:

Navigation