Skip to main content
Log in

Transport Properties of In3+- and Y3+-Doped Hexagonal Perovskite Ba5In2Al2ZrO13

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

A complex oxide Ba5In1.9Y0.1Al2ZrO13 with hexagonal perovskite structure (a = 5.971(4) Å, с = 24.012(1) Å) is prepared for the first time. The phase is found to dissociative-absorb water from gas phase, the degree of hydration being as high as 0.39 mol Н2О. It was found by using IR-spectroscopy that protons are present therein as energetically nonequivalent ОН-groups involved in hydrogen bonds of diverse strength. Isovalent yttrium-doping of the Ba5In2Al2ZrO13 phase is shown not to lead to any valuable change in the oxygen-ion-conductivity as compared with the Ba5In2.1Al2Zr0.9O12.95 acceptor doping that allows increasing the oxygen-ion-conductivity by a factor of 1.3. Both types of doping lead to increase in the proton conductivity and, as a corollary to this, an increase in the proton concentration. For these phases the degree of hydration depends on the cell parameters, hence, is determined by space availability for ОН-groups in the barium coordination. Proton transport dominates in the Ba5In2Al2ZrO13, Ba5In2.1Al2Zr0.9O12.95, and Ba5In1.9Y0.1Al2ZrO13 phases below 600оС in humid atmosphere (pH2О = 1.92 × 10–2 atm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

REFERENCES

  1. Takahashi, T. and Iwahara, H., Solid-state ionics: Protonic conduction in perovskite-type oxide solid solution, Rev. Chem. Mineral, 1980, vol. 17, no. 4, p. 243.

    CAS  Google Scholar 

  2. Iwahara, H., Esaka, T., Uchida, H., and Maeda, N., Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production, Solid State Ionics, 1981, vol. 3, no. 4, p. 359.

    Article  Google Scholar 

  3. Uchida, H., Maeda, N., and Iwahara H., Relation between proton and hole conduction in SrCeO3-based solid electrolytes under water containing atmospheres at high temperatures, Solid State Ionics, 1983, vol. 11, no. 2, p. 117.

    Article  CAS  Google Scholar 

  4. Iwahara, H., Proton-conducting ceramics, Ceram. Jap., 1983, vol. 18, no. 10, p. 855.

    CAS  Google Scholar 

  5. Norby, T., Advances in proton ceramic fuel cells, steam electrolyzers, and dehydrogenation reactors based on materials and process optimizations, ECS Trans., 2017, vol. 80, no. 9, p. 23.

    Article  CAS  Google Scholar 

  6. Medvedev, D., Lyagaeva, J., Gorbova, E., Demin, A., and Tsiakaras, P., Advanced materials for SOFC application: Strategies for the development of highly conductive and stable solid oxide proton electrolytes, B: Progr. Mater. Sci., 2016, vol. 75, p. 38.

    CAS  Google Scholar 

  7. Medvedev, D. and Ricote, S., Electrochemistry of proton-conducting ceramic materials and cells, B: J. Solid State Electrochem., 2020, vol. 24, no. 7, p. 1445.

    CAS  PubMed  Google Scholar 

  8. Xi, X. and Lei, B., Intermediate Temperature Solid Oxide Fuel Cells, Elsevier, 2020. p. 81.

    Google Scholar 

  9. Tarancón, A., Strategies for Lowering Solid Oxide Fuel Cells Operating Temperature, Energies, 2009, vol. 2, p. 1130.

    Article  Google Scholar 

  10. Medvedev, D., Trends in research and development of protonic ceramic electrolysis cells, Int. J. Hydrogen Energy, 2019, vol. 44, no. 49, p. 26711.

    Article  CAS  Google Scholar 

  11. Stenina, I.A. and Yaroslavtsev, A.B., High-temperature and composite proton conducting electrolytes, Neorgan. mater. (In Russian), 2017, no. 53(4), p. 335.

  12. Haugsrud, R., High Temperature Proton Conductors – Fundamentals and Functionalities, Diffusion Foundations, 2016, vol. 8, p. 31.

    Article  CAS  Google Scholar 

  13. Kim, J., Sengodan, S., Kim, S., Kwon, O., Bud, Y., and Kim, G., Proton conducting oxides: A review of materials and applications for renewable energy conversion and storage. Renewable Sustainable Energy Rev., 2019, vol. 109, p. 606.

    Article  CAS  Google Scholar 

  14. Kochetova, N., Animitsa, I., Medvedev, D., Demin, A., and Tsiakaras, P., Recent activity in the development of proton-conducting oxides for high-temperature applications, RSC Advances, 2016, vol. 6, p. 73222.

    Article  CAS  Google Scholar 

  15. Nomura, K., Takeuchi, T., Kamo, Sh., Kageyama H., and Miyazaki, Y., Proton conduction in doped LaScO3 perovskites, Solid State Ionics, 2004, vol. 175, p. 553.

    Article  CAS  Google Scholar 

  16. Zhao, G., Suzuki, K., Hirayama, M., and Kanno, R., Syntheses and characterization of novel perovskite-type LaScO3-based lithium ionic conductors, Molecules, 2021, vol. 26, p. 299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kuzmin, A.V., Stroeva, A. Yu., Gorelov, V.P., Novikova, Yu.V., Lesnichyova, A.S., Farlenkov, A.S., and Khodimchuk, A.V., Synthesis and characterization of dense proton-conducting La1 – xSrxScO3 – α ceramics, Int. J. Hydrogen Energy, 2019, vol. 44, p. 1130.

    Article  CAS  Google Scholar 

  18. Kuzmin, A.V., Lesnichyova, A.S., Tropin, E.S., Stroeva, A. Yu., Vorotnikov, V.A., Solodyankina, D.M., Belyakov, S.A., Plekhanov, M.S., Farlenkov, A.S., Osinkin, D.A., Beresnev, S.M., and Ananyev, M.V., LaScO3-based electrolyte for protonic ceramic fuel cells: Influence of sintering additives on the transport properties and electrochemical performance, J. Power Sources, 2020, vol. 466, p. 228255.

    Article  CAS  Google Scholar 

  19. Kasyanova, A.V., Rudenko, A.O., Lyagaeva, Y.G., and Medvedev, D.A., Lanthanum-containing proton electrolytes with perovskite structure, V: Membrany Membr. Technol. (in Russian), 2021, no. 11(2), p. 83.

  20. Magrasó, A., Polfus, J., Frontera, C., Canales-Vázquez, J., Kalland, L., Hervoches, C., Erdal, S., Hancke, R., Islam, M., Norby, T., and Haugsrud, R., Complete structural model for lanthanum tungstate: a chemically stable high temperature proton conductor by means of intrinsic defects, J. Mater. Chem., 2012, vol. 22, no. 5, p. 1762.

    Article  Google Scholar 

  21. Haugsrud, R. and Norby, T., High-temperature proton conductivity in acceptor-doped LaNbO4, Solid State Ionics, 2006, vol. 177, no. 13–14, p. 1129.

    Article  CAS  Google Scholar 

  22. Huse, M., Norby, T., and Haugsrud, R., Effects of A and B site acceptor doping on hydration and proton mobility of LaNbO4, Int. J. Hydrogen Energy, 2012, vol. 37, no. 9, p. 8004.

    Article  CAS  Google Scholar 

  23. Besikiotis, V., Knee, C. S., Ahmed, I., Haugsrud, R., and Norby, T., Crystal structure, hydration and ionic conductivity of the inherently oxygen-deficient La2Ce2O7, Solid State Ionics, 2012, vol. 228, p. 1.

    Article  CAS  Google Scholar 

  24. Tu, T., Zhang, B., Liu, J., Wu, K., and Peng, K., Synthesis and conductivity behavior of Mo-doped La2Ce2O7 proton conductors, Electrochim. Acta, 2018, vol. 283, p. 1366.

    Article  CAS  Google Scholar 

  25. Zhu, Z., Liu, B., Shen, J., Lou, Y., and Ji, Y., La2Ce2O7: A promising proton ceramic conductor in hydrogen economy, J. Alloys Compd., 2016, vol. 659, p. 232.

    Article  CAS  Google Scholar 

  26. Omata, T., Okuda, K., Tsugimoto, S., and Otsuka-Matsuo-Yao, S., Water and hydrogen evolution properties and protonic conducting behaviors of Ca2+-doped La2Zr2O7 with a pyrochlore structure, Solid State Ionics, 1997, vol. 104, p. 249.

    Article  CAS  Google Scholar 

  27. Eurenius, K., Proton conductivity in acceptor-doped lanthanide based pyrochlore oxides, PhD. (Chem.) Dissertation, Univ. Gothenburg, Gothenburg, Sweden, 2009.

  28. Shlyakhtina, A., Lyskov, N., Nikiforova, G., Kasyanova, A., Vorobieva, G., Kolbanev, I., Stolbov, D., and Medvedev, D., Proton Conductivity of La2(Hf2 – xLax)O7 – x/2 “Stuffed” Pyrochlores, B: Appl. Sci., 2022, vol. 12, no. 9, p. 4342.

    Article  CAS  Google Scholar 

  29. Haugsrud, R., Defects and transport properties in Ln6WO12 (Ln = La, Nd, Gd, Er), Solid State Ionics, 2007, vol. 178, p. 555.

    Article  CAS  Google Scholar 

  30. Haugsrud, R. and Norby, T., Proton conduction in rare-earth ortho-niobates and ortho-tantalates, Nature Mater., 2006, vol. 5, no. 3, p. 193.

    Article  CAS  Google Scholar 

  31. Solís, C., Navarrete, L., Roitsch, S., and Serra, J., Electrochemical properties of composite fuel cell cathodes for La5.5WO12 – δ proton conducting electrolytes, J. Mater. Chem., 2012, vol. 22, no. 31, p. 16051.

    Article  Google Scholar 

  32. Zhou, Y., Shiraiwa, M., Nagao, M., Fujii, K., Tanaka, I., Yashima, M., Baque, L., Basbus, J., Mogni, L., and Skinner, S., Protonic Conduction in the BaNdInO4 Structure Achieved by Acceptor Doping, Chem. Mater., 2021, vol. 33, p. 2139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tarasova, N., Animitsa, I., Galisheva, A., and Korona, D., Incorporation and Conduction of Protons in Ca, Sr, Ba-Doped BaLaInO4 with Ruddlesden–Popper Structure, Materials, 2019, vol. 12, no. 10, p. 1668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tarasova, N. and Animitsa, I., Materials AIILnInO4 with Ruddlesden–Popper Structure for Electrochemical Applications: Relationship between Ion (Oxygen-Ion, Proton) Conductivity, Water Uptake, and Structural changes, Materials, 2022, vol. 15, no. 1, p. 114.

    Article  CAS  Google Scholar 

  35. Yashima, M., Tsujiguchi, T., Sakuda, Y., Yasui, Y., Zhou, Y., Fujii, K., Torii, S., Kamiyama, T., and Skinner, S., High oxide-ion conductivity through the interstitial oxygen site in Ba7Nb4MoO20-based hexagonal perovskite related oxides, Nature Commun., 2021, vol. 12, no. 1, p. 1.

    Article  Google Scholar 

  36. Fop, S., McCombie, K., Wildman, E., Skakle, J., Irvine, J., Connor, P., Savaniu, C., Ritter, C., and Mclaughlin, A., High oxide ion and proton conductivity in a disordered hexagonal perovskite, Nature Mater, 2020, vol. 19, p. 752.

    Article  CAS  Google Scholar 

  37. Murakami, T., Hester, J., and Yashima, M., High Proton Conductivity in Ba5Er2Al2ZrO13, a Hexagonal Perovskite-Related Oxide with intrinsically Oxygen-Deficient Layers, J. Amer. Chem. Soc., 2020, vol. 142, p. 11653.

    Article  CAS  Google Scholar 

  38. Fop, S., Solid oxide proton conductors beyond perovskites, J. Mater. Chem. A, 2021, vol. 9, p. 18836.

    Article  CAS  Google Scholar 

  39. Shpanchenko, R., Abakumov, A., Antipov, E., and Kovba, L., Crystal structure of Ba5In2Al2ZrO13, J. Alloy. Compd., 1994, vol. 206, p. 185.

    Article  CAS  Google Scholar 

  40. Andreev, R., Korona, D., Anokhina, I., and Animitsa, I., Proton and Oxygen-Ion Conductivities of Hexagonal Perovskite Ba5In2Al2ZrO13, Materials, 2022, vol. 15, no. 11, p. 3944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shannon, R., Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. Sect. A Cryst. Phys. Diffr. Theor. Gen. Crystallogr., 1976, vol. 32, p. 751.

    Article  Google Scholar 

  42. Irvine, J., Sinclair, D., and West, A., Electroceramics: Characterization by Impedance Spectroscopy, Adv. Mater., 1990, vol. 2, p. 132.

    Article  CAS  Google Scholar 

  43. Huang, W., Ding, Y., Li, Y., and Wang, Z., Proton conductivity and transport number of complex perovskite barium strontium tantalite, Ceram. Intern., 2021, vol. 47, no. 2, p. 2517.

    Article  CAS  Google Scholar 

  44. Fop, S., McCombie, K., Smith, R., and Mclaughlin, A., Enhanced Oxygen Ion Conductivity and Mechanistic Understanding in Ba3Nb1 – xVxMoO8.5, Chem. Mater., 2020, vol. 32, no. 11, p. 4724.

    Article  CAS  Google Scholar 

  45. Iwahara, H., High temperature protonic conduction based on perovskite-type oxides, ISSI Lett., 1992, vol. 2, no. 3, p. 11.

    Google Scholar 

  46. Munch, W., Seifert, G., Kreuer, K.D., and Maier, J., A quantum molecular dynamics study of proton conduction phenomena in BaCeO3, Solid State Ionics, 1996, vol. 86, p. 647.

    Article  Google Scholar 

  47. Kreuer, K., Dippel, Th., Baikov, Yu., and Maier, J., Water solubility, proton and oxygen diffusion in acceptor doped BaCeO3: A single crystal analysis, Solid State Ionics, 1996, vol. 86, p. 613.

    Article  Google Scholar 

  48. Kreuer, K., Adams, S., Fuchs, W., Klock, U., and Maier, J., Proton conducting alkaline earth zirconates and titanates for high drain electrochemical applications, Solid State Ionics, 2001, vol. 145, p. 295.

    Article  CAS  Google Scholar 

  49. Tarasova, N., Galisheva, A., Animitsa, I., Korona, D., and Davletbaev, K., Novel proton-conducting layered perovskite based on BaLaInO4 with two different cations in B-sublattice: Synthesis, hydration, ionic (O2–, H+) conductivity, Int. J. Hydrogen Energy, 2022, vol. 47, no. 44, p. 18972.

    Article  CAS  Google Scholar 

  50. Okuyama, Y., Kozai, T., Ikeda, Sh., Matsuka, M., Sakai, T., and Matsumoto, H., Incorporation and conduction of proton in Sr-doped LaMO3 (M = Al, Sc, In, Yb, Y), Electrochim. Acta, 2014, vol. 125, p. 443.

    Article  CAS  Google Scholar 

Download references

Funding

This study is supported by the joined grant of the Russian Scientific Foundation and the Government of Sverdlovskaya oblast no. 22-23-20003, https://rscf.ru/en/project/22-23-20003/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. E. Animitsa.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by Yu. Pleskov

Based on the materials of the 16th International Meeting “Fundamental Problems of Solid State Ionics”, Chernogolovka, June 27–July 7, 2022.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreev, R.D., Anokhina, I.A., Korona, D.V. et al. Transport Properties of In3+- and Y3+-Doped Hexagonal Perovskite Ba5In2Al2ZrO13. Russ J Electrochem 59, 190–203 (2023). https://doi.org/10.1134/S1023193523030035

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193523030035

Keywords:

Navigation