Skip to main content
Log in

Electrochemical impedance simulation of a metal oxide heterostructure/electrolyte interface: A review

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The results of an analysis of the literature data obtained when investigating processes of charge transfer at interfaces of heterostructures formed by various methods, including the high-energy methods, are presented in this paper. The performed investigation of oxide layers at the titanium surface, with use made of impedance spectroscopy data made it possible to reveal the nature and influence of some processes and factors on the charge transfer mechanism realized at a metal oxide heterostructure/electrolyte interface. Simulating an oxide/electrolyte interface gives one a chance to identify, in a spectrum, the responses that characterize the behavior of porous and poreless layers, as well as the responses that are due to the space-charge region formed in the oxide material and to the corrosion and diffusion processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gordienko, P.S. and Gnedenkov, S.V., Mikrodugovoe oksidirovanie titana i ego splavov (Microarc Oxidation of Titanium and Its Alloys), Vladivostok: Dal’nauka, 1997.

    Google Scholar 

  2. Yerokhin, A.L., Leyland, A., and Matthews, A., Appl. Surf. Sci., 2002, vol. 200, p. 172.

    Article  CAS  Google Scholar 

  3. Yerokhin, A.L., Nie, X., Leyland, A., Matthews, A., and Dowey, S.J., Surf. Coat. Technol., 1999, vol. 122, p. 73.

    Article  CAS  Google Scholar 

  4. Sundararajan, G. and Rama Krishna, L., Surf. Coat. Technol., 2003, vol. 167, p. 269.

    Article  CAS  Google Scholar 

  5. Meyer, S., Gorges, R., and Kreisel, G., Electrochim. Acta, 2004, vol. 49, p. 3319.

    Article  CAS  Google Scholar 

  6. Xue, W., Wang, C., Chen, R., and Deng, Z., Mater. Lett., 2002, vol. 52, p. 435.

    Article  CAS  Google Scholar 

  7. Gnedenkov, S.V., Sinebryukhov, S.L., Skorobogatova, T.M., and Gordienko, P.S., Elektrokhimiya, 1998, vol. 34, p. 1046.

    Google Scholar 

  8. Gnedenkov, S.V., Gordienko, P.S., Sinebrukhov, S.L., Khrisanphova, O.A., and Skorobogatova, T.M., Corrosion (Houston), 2000, no. 1(56), p. 24.

    Google Scholar 

  9. Gnedenkov, S.V., Sinebryukhov, S.L., and Gordienko, P.S., Vestn. Dal.-Vost. Otd. Ros. Akad. Nauk, 2002, no. 3(103), p. 21.

    Google Scholar 

  10. Boukamp, B.A., Solid State Ionics, 1986, vol. 20, p. 31.

    Article  CAS  Google Scholar 

  11. Stoynov, Z.B., Grafov, B.M., Savova-Stoynov, B., and Elkin, V.V., Elektrokhimicheskii impedans (The Electrochemical Impedance), Moscow: Nauka, 1991.

    Google Scholar 

  12. Gnedenkov, S.V. and Sinebryukhov, S.L., Korr. Mater. Zashch., 2004, no. 2, p. 2.

  13. Esplandiu, M.J., Patrito, E.M., and Macagno, V.A., Electrochim. Acta, 1995, vol. 40, p. 809.

    CAS  Google Scholar 

  14. Kerrec, O., Devilliers, D., Groult, H., and Chemla, M., Electrochim. Acta, 1995, vol. 40, p. 719.

    Article  CAS  Google Scholar 

  15. Liu, C., Bi, Q., Leyland, A., and Matthews, A., Corros. Sci., 2003, vol. 45, p. 1243.

    CAS  Google Scholar 

  16. Zoltowski, P., J. Electroanal. Chem., 1998, vol. 443, p. 149.

    Article  CAS  Google Scholar 

  17. Kudelka, S., Michaelis, A., and Schultze, J.W., Electrochim. Acta, 1996, vol. 41, p. 863.

    Article  CAS  Google Scholar 

  18. Liu, C., Bi, Q., Leyland, A., and Matthews, A., Corros. Sci., 2003, vol. 45, p. 1257.

    CAS  Google Scholar 

  19. Hag, Y., Hong, S.-H., and Xu, K.W., Surf. Coat. Technol., 2002, vol. 154, p. 314.

    Google Scholar 

  20. Nie, X., Leyland, A., Matthews, A., Jiang, J.C., and Metelis, E.I., J. Biomed. Mater. Res., 2001, vol. 57, p. 612.

    Article  CAS  Google Scholar 

  21. Pleskov, Yu.V. and Gurevich, Yu.Ya., Semiconductor Photoelectrochemistry, New York: Consultants Bureau, 1986.

    Google Scholar 

  22. Simons, W., Hubin, A., and Vereecken, J., Electrochim. Acta, 1999, vol. 44, p. 4373.

    Article  CAS  Google Scholar 

  23. Tomkiewicz, M., J. Electrochem. Soc., 1979, vol. 126, p. 2220.

    CAS  Google Scholar 

  24. McCann, J.F. and Badwal, S.P.S., J. Electrochem. Soc., 1982, vol. 129, p. 551.

    CAS  Google Scholar 

  25. Dolata, M., Kedzierzawski, P., and Augustynski, J., Electrochim. Acta, 1996, vol. 41, p. 1287.

    Article  CAS  Google Scholar 

  26. Ibris, N. and Rosca, J.C.M., J. Electroanal. Chem., 2002, vol. 526, p. 53.

    Article  CAS  Google Scholar 

  27. Gnedenkov, S.V. and Sinebryukhov, S.L., Elektrokhimiya, 2005, vol. 41, p. 963.

    Google Scholar 

  28. Chechulin, B.B., Ushkov, S.S., Razuvaeva, I.N., and Gol’dfain, V.N., Titanovye splavy v mashinostroenii (Application of Titanium Alloys in Machine Building), Leningrad: Mashinostroenie, 1977.

    Google Scholar 

  29. Abreu, C.M., Cristobal, M.J., Losada, R., Novoa, X.R., Pena, G., and Perez, M.C., J. Electroanal. Chem., 2004, vol. 572, p. 335.

    Article  CAS  Google Scholar 

  30. West, A.R., Sinclair, D.C., and Hirose, N., J. Electroceram., 1997, vol. 1, p. 65.

    CAS  Google Scholar 

  31. Morskaya korroziya: Spravochnik (Sea Water Corrosion: A Reference Book), Shumakher, M., Ed., Moscow: Metallurgiya, 1983.

    Google Scholar 

  32. Sinebryukhov, S.L., Gnedenkov, S.V., Skorobogatova, T.M., and Egorkin, V.S., Korr. Mater. Zashch. (in press).

  33. Zplot for Windows: Electrochemical Impedance Software Operating Manual, Scribner Associates, 2001, version 2.4.

  34. Al-Kharafi, F.M. and Badawy, W.A., Electrochim. Acta, 1997, vol. 42, p. 579.

    Article  CAS  Google Scholar 

  35. Hornkjol, S. and Hornkjol, I.M., Electrochim. Acta, 1991, vol. 42, p. 577.

    Google Scholar 

  36. Metikos-Hukovic, M., Kwokal, A., and Piljac, J., Biomaterials, 2003, vol. 24, p. 3765.

    Article  CAS  Google Scholar 

  37. Privman, M. and Hepel, T., J. Electroanal. Chem., 1995, vol. 382, p. 137.

    CAS  Google Scholar 

  38. Milosev, I., Metikos-Hukovic, M., and Strehblow, H., Biomaterials, 2000, vol. 21, p. 2103.

    Article  CAS  Google Scholar 

  39. El-Moneim, A.A., Zhang, B.-P., Akiyama, R., Habazaki, H., Kawashima, A., Asami, K., and Hashimoto, K., Corros. Sci., 1997, vol. 39, p. 305.

    CAS  Google Scholar 

  40. Shi, X., Avci, R., and Lewandowski, Z., Corros. Sci., 2002, vol. 44, p. 1027.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Gnedenkov.

Additional information

Original Russian Text © S.V. Gnedenkov, S.L. Sinebryukhov, V.I. Sergienko, 2006, published in Elektrokhimiya, 2006, Vol. 42, No. 3, pp. 235–250.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gnedenkov, S.V., Sinebryukhov, S.L. & Sergienko, V.I. Electrochemical impedance simulation of a metal oxide heterostructure/electrolyte interface: A review. Russ J Electrochem 42, 197–211 (2006). https://doi.org/10.1134/S1023193506030013

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193506030013

Key words

Navigation