Skip to main content
Log in

Epigenetics of Aggressive Behavior

  • REVIEWS AND THEORETICAL ARTICLES
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Multiple studies demonstrating the association of aggressive behavior with allelic variants of neurotransmitter system genes appear to be controversial, while “risk” alleles have no effect on impaired gene expression and functioning of encoded proteins. To explain these associations, we suggested the role of deregulated epigenetic processes caused by the changes in the spatial configuration of transcribed proteins owing to the impaired interaction with noncoding RNAs, which results in modified functioning of genetic networks. Stressful life events occurring during the pre- and postnatal period causing changes in DNA methylation and histone modifications, which disrupt expression of neurotransmitter genes with a long-lasting effect, represent the key factors causing the manifestation of aggressive behavior. The role of stressful life events in epigenome modifications is assumed to be caused by stress-sensitive transposable elements (TEs), whose processing results in the formation of noncoding RNAs probably affecting histone modifications and methylation of certain genomic loci. Transposable elements represent the key sources of sites of binding to transcription factors and regulate genome expression, while their ability to locus-specific transpositions under the stress and self-regulation by noncoding RNAs can explain both the long-term effect of behavioral impairments and their transgenerational transfer. Prevention of behavioral impairments and phenotypic manifestations of genetic liability to aggressive behavior requires the examination of the individual nature of epigenetic modifications for the further targeted action and their correction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Gonzalez-Giraldo, Y., Camargo, A., Lopez-Leon, S., et al., A functional SNP in MIR124-1, a brain expressed miRNA gene, is associated with aggressiveness in a Colombian sample, Eur. Psychiatry, 2015, vol. 30, no. 4, pp. 499—503.

    Article  CAS  PubMed  Google Scholar 

  2. Tremblay, R.E., Developmental origins of disruptive behavior problems: the ‘original sin’ hypothesis, epigenetics and their consequences for prevention, J. Child. Psychol. Psychiatry, 2010, vol. 51, no. 4, pp. 341—367.

    Article  PubMed  Google Scholar 

  3. Provencal, N., Booij, L., and Tremblay, R.E., The developmental origins of chronic physical aggression: biological pathways triggered by early life adversity, J. Exp. Biol., 2015, vol. 218, pp. 123—133.

    Article  PubMed  Google Scholar 

  4. Provencal, N., Suderman, M.J., Guillemin, C., et al., Association of childhood chronic physical aggression with a DNA methylation signature in adult human T cell, PLoS One, 2014, vol. 9, no. 4. e89839

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Baillargeon, R.H., Zoccolillo, M., Keenan, K., et al., Gender differences in physical aggression: a prospective population-based survey of children before and after 2 years of age, Dev. Psychol., 2007, vol. 43, no. 1, pp. 13—26.

    Article  PubMed  Google Scholar 

  6. Manchia, M. and Fanos, V., Targeting aggression in severe mental illness: the predictive role of genetic, epigenetic, and metabolomic markers, Prog. Neuropsychopharmacol. Biol. Psychiatry, 2017, vol. 77, pp. 32—41. https://doi.org/10.1016/j.pnpbp.2017.03.024

    Article  PubMed  Google Scholar 

  7. Tkachenko, O.N., Genetic correlates of human aggression: a literature review, Sots.-Ekol. Tekhnol., 2016, no. 3, pp. 68—86.

  8. Kudryavtseva, N.N., Markel’, A.L., and Orlov, Yu.L., Aggressive behavior: genetic and physiological mechanisms, Russ. J. Genet.: Appl. Res., 2015, vol. 5, no. 4, pp. 413—429. https://doi.org/10.1134/S2079059715040085

    Article  Google Scholar 

  9. Zhang, Y., Ming, Q., Wang, X., and Yao, S., The interactive effect of the MAOA-VNTR genotype and childhood abuse on aggressive behaviors in Chinese male adolescents, Psychiatr. Genet., 2016, vol. 26, no. 3, pp. 117—123. https://doi.org/10.1097/YPG.0000000000000125

    Article  CAS  PubMed  Google Scholar 

  10. Qadeer, M.I., Amar, A., Mann, J.J., and Hasnain, S., Polymorphisms in dopaminergic system genes; association with criminal behavior and self-reported aggression in violent prison inmates from Pakistan, PLoS One, 2017, vol. 12(6). e0173571. https://doi.org/10.1371/journal.pone.0173571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tielbeek, J.J., Karlsson Linnér, R., Beers, K., et al., Meta-analysis of the serotonin transporter promoter variant (5-HTTLPR) in relation to adverse environment and antisocial behavior, Am. J. Med. Genet., Part B, 2016, vol. 171(5), pp. 748—760. https://doi.org/10.1002/ajmg.b.32442

    Article  CAS  Google Scholar 

  12. Waltes, R., Chiocchetti, A.G., and Freitag, C.M., The neurobiological basis of human aggression: a review on genetic and epigenetic mechanisms, Am. J. Med. Genet., Part B, 2016, vol. 171, no. 5, pp. 650—675.

    Google Scholar 

  13. Arseneault, L., Tremblay, R.E., Boulerice, B., and Saucier, J.F., Obstetrical complications and violent delinquency: testing two developmental pathways, Child. Dev., 2002, vol. 73, no. 2, pp. 496—508.

    Article  PubMed  Google Scholar 

  14. Tremblay, R.E., Nagin, D.S., Seguin, J.R., et al., Physical aggression during early childhood: trajectories and predictors, Pediatrics, 2004, vol. 114, no. 1. e43-50

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ahmed, A.A., Ma, W., Ni, Y., Zhou, Q., and Zhao, R., Embryonic exposure to corticosterone modifies aggressive behavior through alterations of the hypothalamic pituitary adrenal axis and the serotonergic system in the chicken, Horm. Behav., 2014, vol. 65, no. 2, pp. 97—105.

    Article  CAS  PubMed  Google Scholar 

  16. Porsch, R.M., Middeldorp, C.M., Cherny, S.S., et al., Longitudinal heritability of childhood aggression, Am. J. Med. Genet., Part B, 2016, vol. 171, no. 5, pp. 697—707.

    Google Scholar 

  17. Huijbregts, S.C., Seguin, J.R., Zoccolillo, M., et al., Maternal prenatal smoking, parental antisocial behavior, and early childhood physical aggression, Dev. Psychopathol., 2008, vol. 20, no. 2, pp. 437—453.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Veenema, A.H., Early life stress, the development of aggression and neuroendocrine and neurobiological correlates: what can we learn from animal models, Front. Neuroendocrinol., 2009, vol. 30, no. 4, pp. 497—518.

    Article  CAS  PubMed  Google Scholar 

  19. Archer, T., Oscar-Berma, M., Blum, K., and Gold, M., Neurogenetics and epigenetics in impulsive behaviour: impact on reward circuitry, J. Genet. Syndr. Gene Tehr., 2012, vol. 3, no. 3, p. 1000115.

    Google Scholar 

  20. Chistiakov, D.A. and Chekhonin, V.P., Early-life adversity-induced long-term epigenetic programming associated with early onset of chronic physical aggression: studies in humans and animals, World J. Biol. Psychiatry, 2017, vol. 5, pp. 1—20.

    Google Scholar 

  21. Tremblay, R.E. and Szyf, M., Developmental origins of chronic physical aggression and epigenetics, Epigenomics, 2010, vol. 2, no. 4, pp. 495—499.

    Article  CAS  PubMed  Google Scholar 

  22. Non, A.L., Binder, A.M., Barault, L., et al., DNA methylation of stress-related genes and LINE-1 repetitive elements across the healthy human placenta, Placenta, 2012, vol. 33, no. 3, pp. 183—187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Paradis, A.D., Fitzmaurice, G.M., Koenen, K.C., and Buka, S.L., A prospective investigation of neurodevelopmental risk factors for adult antisocial behavior combining official arrest records and self-reports, J. Psychiatr. Res., 2015, vol. 68, pp. 363—370.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Gervin, K., Nordeng, H., Ystrom, E., et al., Long-term prenatal exposure to paracetamol is associated with DNA methylation differences in children diagnosed with ADHD, Clin. Epigenet., 2017, vol. 9, p. 77. https://doi.org/10.1186/s13148-017-0376

    Article  Google Scholar 

  25. Sengupta, S.M., Smith, A.K., Grizenko, N., and Joober, R., Locus-specific DNA methylation changes and phenotypic variability in children with attention-deficit hyperactivity disorder, Psychiatry Res., 2017, vol. 256, pp. 298—304. https://doi.org/10.1016/j.psychres.2017.06.048

    Article  CAS  PubMed  Google Scholar 

  26. Levendosky, A.A., Bogat, G.A., Lonstein, J.S., et al., Infant adrenocortical reactivity and behavioral functioning: relation to early exposure to maternal intimate partner violence, Stress, 2016, vol. 19, no. 1, pp. 37—44.

    Article  PubMed  Google Scholar 

  27. Puzzo, I., Smaragdi, A., Gonzalez, K., et al., Neurobiological, neuroimaging, and neuropsychological studies of children and adolescents with disruptive behavior disorders, Fam. Relat., 2016, vol. 65, pp. 134—150.

    Article  Google Scholar 

  28. Braithwaite, E.C., Kundakovic, M., Ramchandani, P.G., et al., Maternal prenatal depressive symptoms predict infant NR3C1 1F and BDNF IV DNA methylation, Epigenetics, 2015, vol. 10, pp. 408—417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Martinez-Torteya, C., Bogat, G.A., Levendosky, A.A., and von Eye, A., The influence of prenatal intimate partner violence exposure on hypothalamic-pituitary-adrenal axis reactivity and childhood internalizing and externalizing symptoms, Dev. Psychopathol., 2016, vol. 28, pp. 55—72.

    Article  PubMed  Google Scholar 

  30. Franklin, T.B., Russig, H., Weiss, I.C., et al., Epigenetic transmission of the impact of early stress across generations, Biol. Psychiatry, 2010, vol. 68, no. 5, pp. 408—415.

    Article  PubMed  Google Scholar 

  31. Roth, T.L., Lubin, F.D., Funk, A.J., and Sweatt, J.D., Lasting epigenetic influence of early-life adversity on the BDNF, Biol. Psychiatry, 2009, vol. 65, no. 9, pp. 760—769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Marquez, C., Poirier, G.L., Cordero, M.I., et al., Peripuberty stress leads to abnormal aggression, altered amygdale and orbitofrontal reactivity and increased prefrontal MAOA gene expression, Transl. Psychiatry, 2013, vol. 3. e216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Beach, S.R., Brody, G.H., Todorov, A.A., et al., Methylation at 5HTT mediates the impact of child sex abuse on women’s antisocial behavior: an examination of the lowa adoptee sample, Psychosom. Med., 2011, vol. 73, no. 1, pp. 83—87.

    Article  CAS  PubMed  Google Scholar 

  34. Elvir, L., Duclot, F., Wang, Z., and Kabbaj, M., Epigenetic regulation of motivated behaviors by histone deacetylase inhibitors, Neurosci. Biobehav. Rev., 2017, vol. 8. pii: S0149-7634(17)30069-6.

  35. Weaver, I.C., Cervoni, N., Champagne, F.A., et al., Epigenetic programming by maternal behavior, Nat. Neurosci., 2004, vol. 7, no. 8, pp. 847—854.

    Article  CAS  PubMed  Google Scholar 

  36. Suderman, M., McGowan, O., Saski, A., et al., Conserved epigenetic sensitivity to early life experience in the rat and human hippocampus, Proc. Natl. Acad. Sci. U.S.A., 2012, vol. 2, pp. 17266—17272.

    Article  Google Scholar 

  37. Labonte, B., Suderman, M., Maussion, G., et al., Genome-wide epigenetic regulation by early-life trauma, Arch. Gen. Psychiatry, 2012, vol. 69, no. 7, pp. 722—731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ouellet-Morin, I., Wong, C.C., Danese, A., et al., Increased serotonin gene (SERT) DNA methylation is associated with bullying victimization and blunted cortisol response to stress in childhood: a longitudinal study of discordant monozygotic twins, Psychol. Med., 2013, vol. 43, no. 9, pp. 1813—1823.

    Article  CAS  PubMed  Google Scholar 

  39. Harris, A. and Seckl, J., Glucocorticoids, prenatal stress and the programming of disease, Horm. Behav., 2011, vol. 59, pp. 279—289. https://doi.org/10.1016/j.yhbeh.2010.06.007

    Article  CAS  PubMed  Google Scholar 

  40. Lupien, S.J., McEwen, B.S., Gunnar, M.R., and Heim, C., Effects of stress throughout the lifespan on the brain, behavior and cognition, Nat. Rev. Neurosci., 2009, vol. 10, pp. 434—445.

    Article  CAS  PubMed  Google Scholar 

  41. Wang, D., Szyf, M., Benkelfat, C., et al., Peripheral SLC6A4 DNA methylation is associated with in vivo measures of human brain serotonin synthesis and childhood physical aggression, PLoS One, 2012, vol. 7, no. 6. e39501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang, H., Tao, Z., Hong, H., et al., Transposon-derived small RNA is responsible for modified function of WRKY45 locus, Nat. Plants, 2016, vol. 2, pp. 16016—16023.

    Article  CAS  PubMed  Google Scholar 

  43. Checknita, D., Maussion, G., Labonte, B., et al., Monoamine oxidase A gene promoter methylation and transcriptional downregulation in an offender population with antisocial personality disorder, Br. J. Psychiatry, 2015, vol. 206, pp. 216—222.

    Article  CAS  PubMed  Google Scholar 

  44. Philibert, R.A., Wernett, P., Plume, J., et al., Gene environmental interactions with a novel variable monoamine oxidase A transcriptional enhancer are associated with antisocial personality disorder, Biol. Psychol., 2011, vol. 87, no. 3, pp. 366—371.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Jurka, J. and Gentles, A.J., Origin and diversification of minisatellites derived from human Alu sequences, Gene, 2006, vol. 365, pp. 21—26.

    Article  CAS  PubMed  Google Scholar 

  46. van Dongen, J., Nivard, M.G., Baselmans, B.M., et al., Epigenome-wide association study of aggressive behavior, Twin Res. Hum. Genet., 2015, vol. 18, no. 6, pp. 686—698.

    Article  PubMed  Google Scholar 

  47. Guillemin, C., Provencal, N., Suderman, M., et al., DNA methylation signature of childhood chronic physical aggression in T cells of both men and women, PLoS One, 2014, vol. 9, no. 1. e86822

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Provencal, N., Suderman, M.J., Caramaschi, D., et al., Differential DNA methylation regions in cytokine and transcription factor genomic loci associate with childhood physical aggression, PLoS One, 2013, vol. 8, no. 8. e71691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chen, S.D., Sun, X.Y., Niu, W., et al., A preliminary analysis of microRNA-21 expression alteration after antipsychotic treatment in patients with schizophrenia, Psychiatry Res., 2016, vol. 244, pp. 324—332.

    Article  CAS  PubMed  Google Scholar 

  50. Cherepkova, E.V., Maksimov, V.V., and Aftanas, L.I., Polymorphism of serotonin transporter gene in male subjects with antisocial behavior and MMA fighters, Transl. Psychiatry, 2018, vol. 8(1), p. 248.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Klasen, M., Wolf, D., Eisner, P.D., et al., Serotonergic contributions to human brain aggression networks, Front. Neurosci., 2019, vol. 13, p. 42.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Noskova, T., Kazantseva, A., Gaysina, D., et al., Ethnic differences in the serotonin transporter polymorphism (5-HTTLPR) in several European populations, Prog. Neuro-Psychopharmacol. Biol. Psychiatry, 2008, vol. 32(7), pp. 1735—1739.

    Article  CAS  Google Scholar 

  53. Jensen, K.P., Covault, J., Conner, T.S., et al., A common polymorphism in serotonin receptor 1B mRNA moderates regulation by miR-96 and associates with aggressive human behaviors, Mol. Psychiatry, 2009, vol. 14, no. 4, pp. 381—389.

    Article  CAS  PubMed  Google Scholar 

  54. Fazeli, Z., Ghaderian, S.M.H., Najmabadi, H., and Omrani, M.D., High expression of miR-510 was associated with CGG expansion located at upstream of FMR1 into full mutation, J. Cell. Biochem., 2018, vol. 2, pp. 1—8. https://doi.org/10.1002/jcb.27505

    Article  CAS  Google Scholar 

  55. Noskova, T.G., Kazantseva, A.V., Gareeva, A.E., et al., Association of several polymorphic loci of serotoninergic genes with unipolar depression, Russ. J. Genet., 2009, vol. 45, no. 6, pp. 742—748. https://doi.org/10.1134/S1022795409060143

    Article  CAS  Google Scholar 

  56. Millan, M.J., MicroRNA in the regulation and expression of serotonergic transmission in the brain and other tissues, Curr. Opin. Pharmacol., 2011, vol. 11, no. 1, pp. 11—22.

    Article  CAS  PubMed  Google Scholar 

  57. Kazantseva, A.V., Kanzafarova, R.F., Traks, T., et al., Association of wolframin 1 gene (WFS1) and anxiety-related personality traits: modulating effect of environmental factors, Med. Genet., 2015, vol. 14, no. 9(159), pp. 31—36.

  58. Kovacs-Nagy, R., Elek, Z., Szekely, A., et al., Association of aggression with a novel microRNA binding site polymorphism in the wolframin gene, Am. J. Med. Genet., Part B, 2013, vol. 162B, no. 4, pp. 404—412.

    Google Scholar 

  59. Luo, M., Ding, L., Li, Q., and Yao, H., miR-668 enhances the radioresistance of human breast cancer, Breast Cancer, 2017, vol. 24, pp. 673—682.

    Article  PubMed  Google Scholar 

  60. Nemeth, N., Kovacs-Nagy, R., Szekely, A., et al., Association of impulsivity and polymorphic microRNA-641 target sites in the SNAP-25 gene, PLoS One, 2013, vol. 8, no. 12. e84207

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Antonucci, F., Corradini, I., Fossati, G., et al., SNAP-25, a known presynaptic protein with emerging postsynaptic functions, Front. Synaptic. Neurosci., 2016, vol. 8, p. 7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Malki, K., Du, RietzE., and Crusio, W.E., Transcriptome analysis of genes and gene networks involved in aggressive behavior in mouse and zebrafish, Am. J. Med. Genet., Part B, 2016, vol. 171(6), pp. 827—838.

    CAS  Google Scholar 

  63. Cecil, C.A.M., Walton, E., and Pingault, J.B., DRD4 methylation as a potential biomarker for physical aggression: an epigenome-wide, cross-tissue investigation, Am. J. Med. Genet., Part B, 2018, vol. 177(8), pp. 746—764.

    CAS  Google Scholar 

  64. Hunter, R.G. and McEwen, B.S., Stress and anxiety across the lifespan: structural plasticity and epigenetic regulation, Epigenomics, 2013, vol. 5, no. 2, pp. 177—194.

    Article  CAS  PubMed  Google Scholar 

  65. Mustafin, R.N. and Khusnutdinova, E.K., The role of transposons in epigenetic regulation of ontogenesis, Russ. J. Dev. Biol., 2018, vol. 49, no. 2, pp. 61—78. https://doi.org/10.1134/S1062360418020066

    Article  CAS  Google Scholar 

  66. Johnson, R. and Guigo, R., The RIDL hypothesis: transposable elements as functional domains of long noncoding RNAs, RNA, 2014, vol. 20, no. 7, pp. 959—976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kapusta, A., Kronenberg, Z., Lynch, V.J., et al., Transposable elements are major contributors to the origin, diversification, and regulation of vertebrate long noncoding RNAs., PLoS Genet., 2013, vol. 9, no. 4. e1003470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Piriyapongsa, J. and Jordan, I.K., A family of human microRNA genes from miniature inverted-repeat transposable elements, PLoS One, 2007, vol. 14, no. 2, p. e203

    Article  CAS  Google Scholar 

  69. Yuan, Z., Sun, X., Liu, H., et al., MicroRNA genes derived from repetitive elements and expanded by segmental duplication events in mammalian genomes, PLoS One, 2011, vol. 6, no. 3, p. e17666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Tempel, S., Pollet, N., and Tahi, F., NcRNAclassifier: a tool for detection and classification of transposable element sequences in RNA hairpins, BMC Bioinformatics, 2012, vol. 13, pp. 246—258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Roberts, J.T., Cooper, E.A., and Favreau, C.J., Formation from transposable element insertions and noncoding RNA mutations, Mobile Genet. Elem., 2013, vol. 1, no. 6, p. e27755.

    Article  Google Scholar 

  72. Qin, S., Jin, P., Zhou, X., et al., The role of transposable elements in the origin and evolution of microRNAs in human, PLoS One, 2015, vol. 10, no. 6, p. e0131365.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Lowe, C.B. and Haussler, D., 29 mammalian genomes reveal novel exaptations of mobile elements for likely regulatory functions in the human genome, PLoS One, 2012, vol. 7, no. 8. e43128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. de Souza, F.S., Franchini, L.F., and Rubinstein, M., Exaptation of transposable elements into novel cis-regulatory elements: is the evidence always strong, Mol. Biol. Evol., 2013, vol. 30, no. 6, pp. 1239—1251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lin, R., Ding, L., Casola, C., et al., Transposase-derived transcription factors regulate light signaling in Arabidopsis, Science, 2007, vol. 318, pp. 1302—1305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Duan, C.G., Wang, X., Pan, L., et al., A pair of transposon-derived proteins function in a histone acetyltransferase complex for active DNA demethylation, Cell. Res., 2017, vol. 27, no. 2, pp. 226—240.

    Article  CAS  PubMed  Google Scholar 

  77. Jacques, P.E., Jeyakani, J., and Bourgue, G., The majority of primate-specific regulatory sequences are derived from transposable elements, PLoS Genet., 2013, vol. 9, no. 5. e1003504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Jjingo, D., Conley, A.B., Wang, J., et al., Mammalian-wide interspersed repeat (MIR)-derived enhancers and the regulation of human gene expression, Mobile DNA, 2014, vol. 5, pp. 5—14.

    Article  CAS  Google Scholar 

  79. Mustafin, R.N. and Khusnutdinova, E.K., The role of transposon interactions with epigenetic factors during aging, Usp. Gerontol., 2017, no. 4, pp. 516—528.

  80. Todeschini, A.L., Morillon, A., Springer, M., and Lesage, P., Severe adenine starvation activates Ty1 transcription and retrotransposition in Saccharomyces cerevisiae, Mol. Cell. Biol., 2005, vol. 25, pp. 7459—7472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Jardim, S.S., Schuch, A.P., Pereira, C.M., and Loreto, E.L., Effects of heat and UV radiation on the mobilization of transposon mariner-Mos1, Cell. Stress Chaperones, 2015, vol. 20, no. 5, pp. 843—851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Makarevitch, I., Waters, A.J., West, P.T., et al., Transposable elements contribute to activation of maize genes in response to abiotic stress, PLoS Genet., 2015, vol. 11, no. 1. e1004915

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Hunter, R.G., Gagnidze, K., McEwen, B.S., and Pfaff, D.W., Stress and the dynamic genome: steroids, epigenetics, and the transposome, Proc. Natl. Acad. Sci. U.S.A., 2015, vol. 112, no. 22, pp. 6828—6833.

    Article  CAS  PubMed  Google Scholar 

  84. Markel’, A.L., Stress and evolution, Inf. Vestn. Vavilovskogo O-va. Genet. Sel., 2008, nos. 1—2, pp. 206—215.

  85. Feng, G., Leem, Y.E., and Levin, H.L., Transposon integration expression of stress response genes, Nucleic Acids Res., 2013, vol. 41, no. 2, pp. 775—789.

    Article  CAS  PubMed  Google Scholar 

  86. Fujiwara, H., Site-specific non-LTR retrotransposons, Microbiol. Spectr., 2015, vol. 3, no. 2. https://doi.org/10.1128/microbiolspec.MDNA3-0001-2014

  87. Han, M.J., Xu, H.E., Zhang, H.H., et al., Spy: a new group of eukaryotic DNA transposons without target site duplications, Genome Biol. Evol., 2014, vol. 6, no. 7, pp. 1748—1757.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Samantarrai, D., Dash, S., Chhetri, B., et al., Genomic and epigenomic cross-talks in the regulatory landscape of miRNAs in breast cancer, Mol. Cancer Res., 2013, vol. 11, no. 4, pp. 315—328.

    Article  CAS  PubMed  Google Scholar 

  89. Xu, C., Tian, J., and Mo, B., SiRNA-mediated DNA methylation and H3K9 dimethylation in plants, Protein Cell, 2013, vol. 4(9), pp. 656—663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Mustafin, R.N. and Khusnutdinova, E.K., The role of transposable elements in emergence of Metazoa, Biochemistry (Moscow), 2018, vol. 83, no. 3, pp. 185—199. https://doi.org/10.1134/S000629791803001X

    Article  CAS  PubMed  Google Scholar 

  91. Taruscio, D. and Mantovani, A., Factors regulating endogenous retroviral sequences in human and mouse, Cytogenet. Genome Res., 2004, vol. 105, pp. 351—362.

    Article  CAS  PubMed  Google Scholar 

  92. Fan, J. and Papadopoulos, V., Transcriptional regulation of translocator protein (Tspo) via a SINE B2-mediated natural antisense transcript in MA-10 Leydig cells, Biol. Reprod., 2012, vol. 86, pp. 1—15.

    Article  CAS  Google Scholar 

  93. Chaiwongwatanakul, S., Yanatatsaneejit, P., Tongsima, S., et al., Sex steroids regulate expression of genes containing long interspersed elements-1s in breast cancer cells, Asian Pac. J. Cancer Prev., 2016, vol. 17, pp. 4003—4007.

    PubMed  Google Scholar 

  94. Mustafin, R.N. and Khusnutdinova, E.K., Non-coding parts of genomes as the basis of epigenetic heredity, Vavilovskii Zh. Genet. Sel., 2017, vol. 21, no. 6, pp. 742—749.

    Google Scholar 

  95. Capuron, L. and Miller, A.H., Immune system to brain signaling: neuropsychopharmacological implications, Pharmacol. Ther., 2011, vol. 130, no. 2, pp. 226—238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Haggarty, P., Epigenetic consequences of a changing human diet, Proc. Nutr. Soc., 2013, vol. 72, pp. 363—371.

    Article  PubMed  Google Scholar 

  97. McGowan, P.O., Meaney, M.J., and Szyf, M., Diet and the epigenetic (re)programming of phenotypic differences in behavior, Brain Res., 2008, vol. 1237, pp. 12—24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Jackson, D.B., Diet quality and bullying among a cross-national sample of youth, Prev. Med., 2017, vol. 105, pp. 359—365.

    Article  PubMed  Google Scholar 

  99. Zaalberg, A., Wielders, J., Bulten, E., et al., Relationships of diet-related blood parameters and blood lead levels with psychopathology and aggression in forensic psychiatric inpatients, Crim. Behav. Ment. Health, 2016, vol. 26, pp. 196—211.

    Article  PubMed  Google Scholar 

  100. Haagensen, A.M., Sorensen, D.B., Sandoe, P., et al., High fat, low carbohydrate diet limit fear and aggression in Gottingen minipigs, PLoS One, 2014, vol. 9. e93821

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Thorsell, A. and Natt, D., Maternal stress and diet may influence affective behavior and stress-response in offspring via epigenetic regulation of central peptidergic function, Environ. Epigenet., 2016, vol. 2, p. dvw012.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Tarallo, S., Pardini, B., Mancuso, G., et al., MicroRNA expression in relation to different dietary habits: a comparison in stool and plasma samples, Mutagenesis, 2014, vol. 29, pp. 385—391.

    Article  CAS  PubMed  Google Scholar 

  103. Sasaki, A., de Vega, W.C., St-Cyr, S., et al., Perinatal high fat diet alters glucocorticoid signaling and anxiety behavior in adulthood, Neuroscience, 2013, vol. 240, pp. 1—12.

    Article  CAS  PubMed  Google Scholar 

  104. Abuaish, S., Spinieli, R.L., and McGowan, P.O., Perinatal high fat diet induces early activation of endocrine stress responsivity and anxiety-like behavior in neonates, Psychoneuroendocrinology, 2018, vol. 98, pp. 11—21.

    Article  CAS  PubMed  Google Scholar 

  105. Vucetic, Z., Kimmel, J., Totoki, K., et al., Maternal high-fat diet alters methylation and gene expression of dopamine and opioid-related genes, Endocrinology, 2010, vol. 151, pp. 4756—4764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Issler, O., Haramati, S., and Paul, E.D., MicroRNA135 is essential for chronic stress resiliency, antidepressant efficacy, and intact serotonergic activity, Neuron, 2014, vol. 83, pp. 344—360.

    Article  CAS  PubMed  Google Scholar 

  107. Labella, M.H. and Masten, A.S., Family influences on the development of aggression and violence, Curr. Opin. Psychol., 2018, vol. 19, pp. 11—16.

    Article  PubMed  Google Scholar 

  108. Tremblay, R.E., Vitaro, F., and Cote, S.M., Developmental origins of chronic physical aggression: a bio-psycho-social model for the next generation of preventive interventions, Annu. Rev. Psychol., 2018, vol. 69, pp. 383—407.

    Article  PubMed  Google Scholar 

Download references

Funding

The present study was partially supported by the state contract of the Ministry of Science and Education of Russia (no. АААА-А16-116020350032-1), by the Russian Foundation for Basic Research (project no. 17-29-02195 ofi_m), and by the IBG UFRC RAS collection titled “Collection of Human Biological Materials” developed within the project no. 007-030164/2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. N. Mustafin.

Ethics declarations

The present study contains no data on research involving animals as the objects of the study.

The present study contains no data on research involving humans as the objects of the study.

CONFLICTS OF INTEREST

The authors declare no conflict of interest.

Additional information

Translated by A. Kazantseva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mustafin, R.N., Kazantseva, A.V., Enikeeva, R.F. et al. Epigenetics of Aggressive Behavior. Russ J Genet 55, 1051–1060 (2019). https://doi.org/10.1134/S1022795419090096

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795419090096

Keywords:

Navigation