Skip to main content
Log in

The Influence of microRNAs in Regulation of Hormone Dependence in Prostate Cancer Cells

  • HUMAN GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

A spectrum of differentially expressed microRNAs was determined by the massively parallel sequencing method in normal healthy prostate tissues, in hormone-dependent prostate cancer samples, and in the LNCaP and DU145 cell lines. A set of microRNAs in tumors and prostate cancer (PCa) cell lines was identified on the basis of the changes in expression compared with that in normal prostate tissues. Twenty-seven aberrantly expressed microRNAs were detected in tumor tissues and ten of them showed significant changes in expression in LNCaP and DU145 cells. Seven of them demonstrated the change of the expression in the same direction in all the tumor samples as well as in the PCa cell lines. The expression of miR-148a changed in DU145 cells in the opposite direction compared with that in LNCaP cells and tumors. The expression of let-7c, let-7b, miR-99a, miR-125b-2, miR-100, miR-10a, and miR-31 was reversed in DU145 cells compared with LNCaP cells. However, these microRNAs exhibited no significant changes in expression in tumors. It turns out that the target of miR-148a, let-7b, and microRNAs, included in the miR-99a/let-7c/miR-125b-2 cluster, the expression of which increased in LNCaP cells and decreased in DU145 cells, is the insulin-like growth factor receptor gene 1 (IGF1R). The obtained data make it possible to assume that the differences in the effect of microRNAs in cell lines are connected with their repressive influence on IGF1R expression in hormone-sensitive LNCaP cells and an absence of such influence in the hormone-independent DU145 cell line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Lin, S. and Gregory, R.I., MicroRNA biogenesis pathways in cancer, Nat. Rev. Cancer, 2015, vol. 15, no. 6, pp. 321—333. https://doi.org/10.1038/nrc3932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kim, Y.K., Kim, B., and Kim, V.N., Re-evaluation of the roles of DROSHA, Exportin 5, and DICER in microRNA biogenesis, Proc. Natl. Acad. Sci. U.S.A., 2016, vol. 113, no. 13, pp. E1881—E1889. https://doi.org/10.1073/pnas.1602532113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Friedman, R.C., Farh, K.K.H., Burge, C.B., and Bartel, D.P., Most mammalian mRNAs are conserved targets of microRNAs, Genome Res., 2009, vol. 19, no. 1, pp. 92—105. https://doi.org/10.1101/gr.082701.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shenoy, A. and Blelloch, R.H., Regulation of microRNA function in somatic stem cell proliferation and differentiation, Nat. Rev. Mol. Cell Biol., 2014, vol. 15, no. 9, pp. 565—576. https://doi.org/10.1038/nrm3854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lima, R.T., Busacca, S., Almeida, G.M., et al., MicroRNA regulation of core apoptosis pathways in cancer, Eur. J. Cancer, 2011, vol. 47, no. 2, pp. 163—174. https://doi.org/10.1016/j.ejca.2010.11.005

    Article  CAS  PubMed  Google Scholar 

  6. Landau, D.A. and Slack, F.J., MicroRNAs in mutagenesis, genomic instability, and DNA repair, Semin. Oncol., 2011, vol. 38, no. 6, pp. 743—751. https://doi.org/10.1053/j.seminoncol.2011.08.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ivey, K.N. and Srivastava, D., MicroRNAs as regulators of differentiation and cell fate decisions, Cell Stem Cell, 2010, vol. 7, no. 1, pp. 36—41. https://doi.org/10.1016/j.stem.2010.06.012

    Article  CAS  PubMed  Google Scholar 

  8. Turner, M.L., Schnorfeil, F.M., and Brocker, T., MicroRNAs regulate dendritic cell differentiation and function, J. Immunol., 2011, vol. 187, no. 8, pp. 3911—3917. https://doi.org/10.4049/jimmunol.1101137

    Article  CAS  PubMed  Google Scholar 

  9. Leung, A.K. and Sharp, P.A., MicroRNA functions in stress responses, Mol. Cell, 2010, vol. 40, no. 2, pp. 205—215. https://doi.org/10.1016/j.molcel.2010.09.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cucchiara, V., Yang, J.C., Mirone, V., et al., Epigenomic regulation of androgen receptor signaling: potential role in prostate cancer therapy, Cancers, 2017, vol. 9, no. 1, p. 9. https://doi.org/10.3390/cancers9010009

    Article  CAS  PubMed Central  Google Scholar 

  11. Sun, D., Lee, Y.S., Malhotra, A., et al., miR-99 family of microRNAs suppresses the expression of prostate-specific antigen and prostate cancer cell proliferation, Cancer Res., 2011, vol. 71, no. 4, pp. 1313—1324. https://doi.org/10.1158/0008-5472.can-10-1031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fujita, Y., Kojima, K., Ohhashi, R., et al., miR-148a attenuates paclitaxel resistance of hormone-refractory, drug-resistant prostate cancer PC3 cells by regulating MSK1 expression, J. Biol. Chem., 2010, vol. 285, no. 25, pp. 19076—19084. https://doi.org/10.1074/jbc.M109.079525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nadiminty, N., Tummala, R., Lou, W., et al., MicroRNA let-7c suppresses androgen receptor expression and activity via regulation of Myc expression in prostate cancer cells, J. Biol. Chem., 2012, vol. 287, no. 2, pp. 1527—1537. https://doi.org/10.1074/jbc.M111.278705

    Article  CAS  PubMed  Google Scholar 

  14. Li, F. and Mahato, R.I., MicroRNAs and drug resistance in prostate cancers, Mol. Pharm., 2014, vol. 11, no. 8, pp. 2539—2552. https://doi.org/10.1021/mp500099g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Iwamura, M., Sluss, P.M., Casamento, J.B., and Cockett, A.T., Insulin-like growth factor I: action and receptor characterization in human prostate cancer cell lines, Prostate, 1993, vol. 22, no. 3, pp. 243—252. https://doi.org/10.1002/pros.2990220307

    Article  CAS  PubMed  Google Scholar 

  16. Rochester, M.A., Riedemann, J., Hellawell, G.O., et al., Silencing of the IGF1R gene enhances sensitivity to DNA-damaging agents in both PTEN wild-type and mutant human prostate cancer, Cancer Gene Ther., 2005, vol. 12, no. 1, pp. 90—100. https://doi.org/10.1038/sj.cgt

    Article  CAS  PubMed  Google Scholar 

  17. Schröder, F.H., Hermanek, P., Denis, L., et al., The TNM classification of prostate cancer, Prostate Suppl., 1992, vol. 21, no. 4, pp. 129—138. https://doi.org/10.1002/pros.2990210521

    Article  Google Scholar 

  18. Mellinger, G.T., Gleason, D., and Bailar, J., The histology and prognosis of prostatic cancer, J. Urol., 1967, vol. 97, no. 2, pp. 331—337. https://doi.org/10.1016/S0022-5347(17)63039-8

    Article  CAS  PubMed  Google Scholar 

  19. Tarasov, V.A., Boiko, N.V., Makhotkin, M.A., et al., The miRNA aberrant expression dependence on DNA methylation in HeLa cells treated with mitomycin C, Russ. J. Genet., 2016, vol. 52, no. 11, pp. 1117—1123. https://doi.org/10.1134/S1022795416110156

    Article  CAS  Google Scholar 

  20. Langmead, B., Trapnell, C., Pop, M., and Salzberg, S.L., Ultrafast and memory-efficient alignment of short DNA sequences to the human genome, Genome Biol., 2009, vol. 10, no. 3. R25. https://doi.org/10.1186/gb-2009-10-3-r25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Robinson, M.D., McCarthy, D.J., and Smyth, G.K., edgeR: a Bioconductor package for differential expression analysis of digital gene expression data, Bioinformatics, 2010, vol. 26, no. 1, pp. 139—140. https://doi.org/10.1093/bioinformatics/btp616

    Article  CAS  PubMed  Google Scholar 

  22. Dezhong, L., Xiaoyi, Z., Xianlian, L., et al., miR-150 is a factor of survival in prostate cancer patients, J. BUON, 2015, vol. 20, no. 1, pp. 173—179.

    PubMed  Google Scholar 

  23. Liu, D.Z., Zhang, H.Y., Long, X.L., et al., MIR-150 promotes prostate cancer stem cell development via suppressing p27Kip1, Eur. Rev. Med. Pharmacol. Sci., 2015, vol. 19, no. 22, pp. 4344—4352.

    CAS  PubMed  Google Scholar 

  24. Kurozumi, A., Goto, Y., Matsushita, R., et al., Tumor-suppressive microRNA-223 inhibits cancer cell migration and invasion by targeting ITGA3/ITGB1 signaling in prostate cancer, Cancer Sci., 2016, vol. 107, no. 1, pp. 84—94. https://doi.org/10.1111/cas.12842

    Article  CAS  PubMed  Google Scholar 

  25. Avgeris, M., Stravodimos, K., and Scorilas, A., Loss of miR-378 in prostate cancer, a common regulator of KLK2 and KLK4, correlates with aggressive disease phenotype and predicts the short-term relapse of the patients, Biol. Chem., 2014, vol. 395, no. 9, pp. 1095—1104. https://doi.org/10.1515/hsz-2014-0150

    Article  CAS  PubMed  Google Scholar 

  26. Zhang, X., Zhang, T., Yang, K., et al., miR-486-5p suppresses prostate cancer metastasis by targeting snail and regulating epithelial–mesenchymal transition, Onco. Targets Ther., 2016, vol. 9, pp. 6909—6914. https://doi.org/10.2147/ott.s117338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bitarte, N., Bandres, E., Boni, V., et al., MicroRNA-451 is involved in the self-renewal, tumorigenicity, and chemoresistance of colorectal cancer stem cells, Stem Cells, 2011, vol. 29, no. 11, pp. 1661—1671. https://doi.org/10.1002/stem.741

    Article  CAS  PubMed  Google Scholar 

  28. Kovalchuk, O., Filkowski, J., Meservy, J., et al., Involvement of microRNA-451 in resistance of the MCF-7 breast cancer cells to chemotherapeutic drug doxorubicin, Mol. Cancer Ther., 2008, vol. 7, no. 7, pp. 2152—2159. https://doi.org/10.1158/1535-7163.mct-08-0021

    Article  CAS  PubMed  Google Scholar 

  29. Zhu, N., Zhang, D., Xie, H., et al., Endothelial-specific intron-derived miR-126 is down-regulated in human breast cancer and targets both VEGFA and PIK3R2, Mol. Cell. Biochem., 2011, vol. 351, nos. 1—2, pp. 157—164. https://doi.org/10.1007/s11010-011-0723-7

    Article  CAS  PubMed  Google Scholar 

  30. Xiong, Y., Kotian, S., Zeiger, M.A., et al., miR-126-3p inhibits thyroid cancer cell growth and metastasis, and is associated with aggressive thyroid cancer, PLoS One, 2015, vol. 10, no. 8. e0130496. https://doi.org/10.1371/journal.pone.0130496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Matsushita, R., Seki, N., Chiyomaru, T., et al., Tumour-suppressive microRNA-144-5p directly targets CCNE1/2 as potential prognostic markers in bladder cancer, Br. J. Cancer, 2015, vol. 113, no. 2, pp. 282—289. https://doi.org/10.1038/bjc.2015.195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu, L.L., Xie, N., Sun, S., et al., Mechanisms of the androgen receptor splicing in prostate cancer cells, Oncogene, 2014, vol. 33, no. 24, pp. 3140—3150. https://doi.org/10.1038/onc.2013.284

    Article  CAS  PubMed  Google Scholar 

  33. Liao, R.S., Ma, S., Miao, L., et al., Androgen receptor-mediated non-genomic regulation of prostate cancer cell proliferation, Transl. Androl. Urol., 2013, vol. 2, no. 3, pp. 187—196. https://doi.org/10.3978/j.issn.2223-4683.2013.09.07

    Article  PubMed  PubMed Central  Google Scholar 

  34. Watson, P.A., Arora, V.K., and Sawyers, C.L., Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer, Nat. Rev. Cancer, 2015, vol. 15, no. 12, pp. 701—711. https://doi.org/10.1038/nrc4016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Denayer, S., Helsen, C., Thorrez, L., et al., The rules of DNA recognition by the androgen receptor, Mol. Endocrinol., 2010, vol. 24, no. 5, pp. 898—913. https://doi.org/10.1210/me.2009-0310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wu, J.D., Haugk, K., Woodke, L., et al., Interaction of IGF signaling and the androgen receptor in prostate cancer progression, J. Cell. Biochem., 2006, vol. 99, no. 2, pp. 392—401. https://doi.org/10.1002/jcb.20929

    Article  CAS  PubMed  Google Scholar 

  37. Liu, S., Kumari, S., Hu, Q., et al., A comprehensive analysis of coregulator recruitment, androgen receptor function and gene expression in prostate cancer, eLife, 2017, vol. 6. e28482. https://doi.org/10.7554/eLife.28482

    Article  PubMed  PubMed Central  Google Scholar 

  38. Hamilton, M.P., Rajapakshe, K.I., Bader, D.A., et al., The landscape of microRNA targeting in prostate cancer defined by AGO-PAR-CLIP, Neoplasia, 2016, vol. 18, no. 6, pp. 356—370. https://doi.org/10.1016/j.neo.2016.04.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li, Y., Deng, X., Zeng, X., and Peng, X., The role of mir-148a in cancer, J. Cancer, 2016, vol. 7, no. 10, pp. 1233—1241. https://doi.org/10.7150/jca.14616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Duursma, A.M., Kedde, M., Schrier, M., et al., miR-148 targets human DNMT3b protein coding region, RNA, 2008, vol. 14, no. 5, pp. 872—877. https://doi.org/10.1261/rna.972008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Braconi, C., Huang, N., and Patel, T., MicroRNA dependent regulation of DNMT-1 and tumor suppressor gene expression by Interleukin-6 in human malignant cholangiocytes, Hepatology, 2010, vol. 51, no. 3, pp. 881—890. https://doi.org/10.1002/hep.23381

    Article  CAS  PubMed  Google Scholar 

  42. Wang, W., Qin, J.J., Voruganti, S., et al., Polycomb group (PcG) proteins and human cancers: multifaceted functions and therapeutic implications, Med. Res. Rev., 2015, vol. 35, no. 6, pp. 1220—1267. https://doi.org/10.1002/med.21358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tzatsos, A., Paskaleva, P., Lymperi, S., et al., Lysine-specific demethylase 2B (KDM2B)-let-7-enhancer of zester homolog 2 (EZH2) pathway regulates cell cycle progression and senescence in primary cells, J. Biol. Chem., 2011, vol. 286, no. 38, pp. 33061—33069. https://doi.org/10.1074/jbc.M111.257667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Vrba, L., Muñoz-Rodríguez, J.L., Stampfer, M.R., and Futscher, B.W., miRNA gene promoters are frequent targets of aberrant DNA methylation in human breast cancer, PLoS One, 2013, vol. 8, no. 1. e54398. https://doi.org/10.1371/journal.pone.0054398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Karoopongse, E., Yeung, C., Byon, J., et al., The KDM2B-let-7b-EZH2 axis in myelodysplastic syndromes as a target for combined epigenetic therapy, PLoS One, 2014, vol. 9, no. 9. e107817. https://doi.org/10.1371/journal.pone.0107817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sun, D., Layer, R., Mueller, A.C., et al., Regulation of several androgen-induced genes through the repression of the miR-99a/let-7c/miR-125b-2 miRNA cluster in prostate cancer cells, Oncogene, 2014, vol. 33, no. 11, pp. 1448—1457. https://doi.org/10.1038/onc.2013.77

    Article  CAS  PubMed  Google Scholar 

  47. Nadiminty, N., Tummala, R., Lou, W., et al., MicroRNA let-7c is downregulated in prostate cancer and suppresses prostate cancer growth, PLoS One, 2012, vol. 7, no. 3. e32832. https://doi.org/10.1371/journal.pone.0032832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Denduluri, S.K., Idowu, O., Wang, Z., et al., Insulin-like growth factor (IGF) signaling in tumorigenesis and the development of cancer drug resistance, Genes Dis., 2015, vol. 2, no. 1, pp. 13—25. https://doi.org/10.1016/j.gendis.2014.10.004

    Article  CAS  PubMed  Google Scholar 

  49. Alimirah, F., Chen, J., Basrawala, Z., et al., DU-145 and PC-3 human prostate cancer cell lines express androgen receptor: implications for the androgen receptor functions and regulation, FEBS Lett., 2006, vol. 580, no. 9, pp. 2294—2300. https://doi.org/10.1016/j.febslet.2006.03.041

    Article  CAS  PubMed  Google Scholar 

  50. Ferraldeschi, R., Welti, J., Luo, J., et al., Targeting the androgen receptor pathway in castration-resistant prostate cancer: progresses and prospects, Oncogene, 2015, vol. 34, no. 14, pp. 1745—1757. https://doi.org/10.1038/onc.2014.115

    Article  CAS  PubMed  Google Scholar 

  51. Edwards, J. and Bartlett, J., The androgen receptor and signal-transduction pathways in hormone-refractory prostate cancer: 2. Androgen-receptor cofactors and bypass pathways, BJU Int., 2005, vol. 95, no. 9, pp. 1327—1335. https://doi.org/10.1111/j.1464-410X.2005.05527.x

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the state task for the Southern Scientific Center, Russian Academy of Sciences, state registration number 01201363192.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Chebotarev.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement of compliance with standards of research involving humans as subjects. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants involved in the study.

Additional information

Translated by A. Kashevarova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarasov, V.A., Naboka, A.V., Makhotkin, M.A. et al. The Influence of microRNAs in Regulation of Hormone Dependence in Prostate Cancer Cells. Russ J Genet 55, 720–727 (2019). https://doi.org/10.1134/S1022795419050132

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795419050132

Keywords:

Navigation