Skip to main content
Log in

Biosynthesis of fatty oils in higher plants

  • Reviews
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Triacylglycerols (TAGs) are one of the most important storage compounds of higher plants; they are the basis for essentially all plant oils and are used by the cell as a reserve source of energy and carbon. Therefore, as a rule, plants store oils almost exclusively in their seeds. Plant oils are not only a major food and feed products, but also the raw material for obtaining many nonfood products from drying oils and lubricants to biofuel. TAGs differ from other storage compounds in that in the course of fruit ripening their quantitative and qualitative composition does not remain constant, but undergoes significant changes. Therefore, the biosynthesis pathways of TAGs in living organisms have been actively studied for the past several decades, and today enough data can be presented to outline as how and where these processes occur in the plant cell. The present review is devoted to a brief description of current ideas about the ways and mechanisms of TAG formation and accumulation in higher plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ACP:

acyl-carrier protein

acDAG-3:

acetyl-1,2-diacyl-sn-glycerol

DAG-1,2:

diacyl-sn-glycerol

DGAT:

1,2-diacyl-sn-glycerol acyltransferase

ER:

endoplasmic reticulum; FA-fatty acid

G3P:

sn-glycero-3-phosphate

GPAT:

sn-glycerol-3-phosphate acyltransferase

GPDH:

sn-glycero-3-phosphate dehydrogenase

KAS:

ketoacyl synthase

LPA:

lysophosphatidic acid

LPAAT:

lysophosphatidic acid acyltransferase

NAG:

neutral acylglycerol

PA:

phosphatidic acid

PC:

phosphatidylcholine

PE:

phosphatidylethanolamine

PDAT:

phosholipid: diacylglycerol acyltransferase

POM:

plants with oily mesocarp

PPA:

phosphatase of phosphatidic acid

PUFA:

polyunsaturated FA

TAG:

1,2,3-tria-cyl-sn-glycerol

References

  1. Lung, S.C. and Weselake, R.J., Diacylglycerol acyltransferase: a key mediator of plant triacylglycerol synthesis, Lipids, 2006, vol. 41, pp. 1073–1088.

    CAS  PubMed  Google Scholar 

  2. Gunstone, F.D. and Harwood, J.L., Occurrence and characteristics of oils and fats, The Lipid Handbook, Gunstone, F.D., Harwood, J.L., and Dijkstra, A.J., Eds., London: Chapman & Hall, 2007, pp. 37–141.

    Google Scholar 

  3. Baud, S. and Lepiniec, L., Physiological and developmental regulation of seed oil production, Prog. Lipid Res., 2010, vol. 49, pp. 235–249.

    CAS  PubMed  Google Scholar 

  4. Berry, S., Fatty acid composition and organoleptic quality of four clones of durian (Durio zibethinus), J. Am. Oil Chem. Soc., 1981, vol. 58, pp. 716–717.

    CAS  Google Scholar 

  5. Gaydou, E.M., Lozano, Y., and Ratovohery, J., Triglyceride and fatty acid compositions in the mesocarp of Persea americana during fruit development, Phytochemistry, 1987, vol. 26, pp. 1595–1597.

    CAS  Google Scholar 

  6. Osagie, A.U. and Bafor, M.E., Triacylglycerols of oil palm mesocarp during fruit maturation, Biochem. Cell Biol., 1990, vol. 68, pp. 313–317.

    CAS  Google Scholar 

  7. Berezhnaya, G.A., Eliseev, I.P., Ozerinina, O.V., Tsydendambaev, V.D., and Vereshchagin, A.G., Dynamics of absolute content and fatty acid composition of acyl lipids in ripening fruits of sea buckthorn, Sov. Plant Physiol., 1992, vol. 39, pp. 794–801.

    Google Scholar 

  8. Ross, J., Sanchez, J., Millan, F., and Murphy, D., Differential presence of oleosins in oleogenic seed and mesocarp tissues in olive (Olea europaea) and avocado (Persea americana), Plant Sci., 1993, vol. 93, pp. 203–210.

    CAS  Google Scholar 

  9. Andrikopoulos, N.K., Triglyceride species compositions of common edible vegetable oils and methods used for their identification and quantification, Food Rev. Int., 2002, vol. 18, pp. 71–102.

    CAS  Google Scholar 

  10. Phillips, B.E. and Smith, C.R., Stereospecific analysis of triglycerides from Mannina emarginata seed oil, Lipids, 1972, vol. 7, pp. 215–217.

    CAS  Google Scholar 

  11. Kleiman, R., Miller, R., Earle, F., and Wolff, A., (S)-1,2-Diacyl-3-acetins: optically active triglycerides from Eounymus verrucosus seed oil, Lipids, 1967, vol. 2, pp. 473–478.

    CAS  PubMed  Google Scholar 

  12. Bagby, M.O. and Smith, C.R., Jr., Asymmetric triglycerides from Impatiens edgeworthii seed oil, Biochim. Biophys. Acta, 1967, vol. 137, pp. 475–477.

    CAS  PubMed  Google Scholar 

  13. Rezanka, T., Schreiberova, O., Cejkova, A., and Sigler, K., The genus Dracunculus-a source of triacylglycerols containing odd-numbered-phenyl fatty acids, Phytochemistry, 2011, vol. 72, pp. 1914–1926.

    CAS  PubMed  Google Scholar 

  14. Asakawa, Y. and Wollenweber, E., A novel phenolic acid derivative from buds of Populus lasiocarpa, Phytochemistry, 1976, vol. 15, pp. 811–812.

    CAS  Google Scholar 

  15. Gunasekera, S., Kinghorn, D., Cordell, G., and Farnsworth, N., Plant anticancer agents. Constituents of Aquilaria malaccensis, J. Nat. Prod., 1981, vol. 44, pp. 569–572.

    CAS  PubMed  Google Scholar 

  16. Kaneda, M., Mizutani, K., Takahashi, Y., Kurono, G., and Nishikawa, Y., Lilioside A and B-two new glycerol glucosides isolated from Lilium longifolium Thunb., Tetrahedron Lett., 1974, vol. 45, pp. 3937–3940.

    Google Scholar 

  17. Hitchcock, C. and Nichols, B., Plant Lipid Biochemistry, London: Academic, 1971.

    Google Scholar 

  18. Millar, A.A., Smith, M.A., and Kunst, L., All fatty acids are not equal: discrimination in plant membrane lipids, Trends Plant Sci., 2000, vol. 5, pp. 95–101.

    CAS  PubMed  Google Scholar 

  19. Voelker, T. and Kinney, A.J., Variations in the biosynthesis of seed-storage lipids, Annu. Rev. Plant Physiol. Plant Mol. Biol., 2001, vol. 52, pp. 335–361.

    CAS  PubMed  Google Scholar 

  20. Oo, K.C., Lee, K.B., and Ong, A., Changes in fatty acid composition of the lipid classes in developing oil palm mesocarp, Phytochemistry, 1986, vol. 25, pp. 405–407.

    CAS  Google Scholar 

  21. Stymne, S.S., Triacylglycerol biosynthesis, The Biochemistry of Plants: A Comprehensive Treatise, Stumpf, P.K. and Conn, E.E, Eds., Orlando: Academic, 1987, pp. 175–214.

    Google Scholar 

  22. Durrett, T.P., Benning, C., and Ohlrogge, J., Plant triacylglycerols as feedstocks for the production of biofuels, Plant J., 2008, vol. 54, pp. 593–607.

    CAS  PubMed  Google Scholar 

  23. Tai, H. and Jaworski, J.G., 3-Ketoacyl-acyl carrier protein synthase III from spinach (Spinacia oleracea) is not similar to other condensing enzymes of fatty acid synthase, Plant Physiol., 1993, vol. 103, pp. 1361–1367.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Weselake, R.J., Taylor, D.C., Rahman, M.H., Shah, S., Laroche, A., McVetty, P., and Harwood, J., Increasing the flow of carbon into seed oil, Biotechnol. Adv., 2009, vol. 27, pp. 866–878.

    CAS  PubMed  Google Scholar 

  25. Pollard, M.R., Anderson, L., Fan, C., Hawkins, D., and Davies, H., A specific acyl-ACP thioesterase implicated in medium-chain fatty acid production in immature cotyledons of Umbellularia californica, Arch. Biochem. Biophys., 1991, vol. 284, pp. 306–312.

    CAS  PubMed  Google Scholar 

  26. Salas, J.J. and Ohlrogge, J.B., Characterization of substrate specificity of plant FatA and FatB acyl-ACP thioesterases, Arch. Biochem. Biophys., 2002, vol. 403, pp. 25–34.

    CAS  PubMed  Google Scholar 

  27. Somerville, C.R., Browse, J., Jaworski, J.C., and Ohlrogge, J., Lipids, Biochemistry and Molecular Biology of Plants, Buchanan, B.D., Gruissem, W. and Jones, R.L., Eds., Rockville: Am. Soc. Plant Physiol., 2000, pp. 456–526.

    Google Scholar 

  28. Cahoon, E. and Ohlrogge, J., Metabolic evidence for the involvement of a δ4-palmitoyl-acyl carrier protein desaturase in petroselinic acid synthesis in coriander endosperm and transgenic tobacco cells, Plant Physiol., 1994, vol. 104, pp. 827–837.

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Alvarez, H. and Steinbuchel, A., Triacylglycerols in prokaryotic microorganisms, Appl. Microbiol. Biotechnol., 2002, vol. 60, pp. 367–376.

    CAS  PubMed  Google Scholar 

  30. Athenstaedt, K. and Daum, G., The life cycle of neutral lipids: synthesis, storage and degradation, Cell Mol. Life Sci., 2006, vol. 63, pp. 1355–1369.

    CAS  PubMed  Google Scholar 

  31. Graham, I., Seed storage oil mobilization, Annu. Rev. Plant Biol., 2008, vol. 59, pp. 115–142.

    CAS  PubMed  Google Scholar 

  32. Li, R., Yu, K., and Hildebrand, D.F., DGAT1, DGAT2, and PDAT expression in seeds and other tissues of epoxy and hydroxy fatty acid accumulating plants, Lipids, 2010, vol. 45, pp. 145–157.

    PubMed  Google Scholar 

  33. Banaš, A., Dahlqvist, A., Ståhl, U., Lenman, M., and Stymne, S., The involvement of phospholipid: diacylglycerol acyltransferases in triacylglycerol production, Biochem. Soc. Trans., 2000, vol. 28, pp. 703–705.

    PubMed  Google Scholar 

  34. Cagliari, A., Pinheiro-Margis, M., Loss, G., Mastroberti, A., de Araujo, Mariath, J., and Margis, R., Identification and expression analysis of castor bean (Ricinus communis) genes encoding enzymes from the triacylglycerol biosynthesis pathway, Plant Sci., 2010, vol. 179, pp. 499–509.

    CAS  PubMed  Google Scholar 

  35. Kennedy, E., Biosynthesis of complex lipids, Fed. Proc., 1961, vol. 20, pp. 934–940.

    CAS  PubMed  Google Scholar 

  36. Turnbull, A.P., Rafferty, J.B., Sedelnikova, S.E., Slabas, A.R., Schierer, T.P., Kroon, J.T., Simon, J.W., Fawcett, T., Nishida, I., Murata, N., and Rice, D.W., Analysis of the structure, substrate specificity, and mechanism of squash glycerol-3-phosphate (1)-acyltransferase, Structure, 2001, vol. 9, pp. 347–353.

    CAS  PubMed  Google Scholar 

  37. Sun, C., Cao, Y.Z., and Huang, A.H.C., Acyl coenzyme a preference of the glycerol phosphate pathway in the microsomes from the maturing seeds of palm, maize, and rapeseed, Plant Physiol., 1988, vol. 88, pp. 56–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Laurent, P. and Huang, A.H.C., Organ- and development-specific acyl coenzyme a lysophosphatidate acyltransferases in palm and meadowfoam, Plant Physiol., 1992, vol. 99, pp. 1711–1715.

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Bafor, M., Jonsson, L., Stobart, A.K., and Stymne, S., Regulation of triacylglycerol biosynthesis in embryos and microsomal preparations from the developing seeds of Cuphea lanceolata, Biochem. J., 1990, vol. 272, pp. 31–38.

    CAS  PubMed  Google Scholar 

  40. Xu, J., Francis, T., Mietkiewska, E., Giblin, M., Barton, D., Zhang, Y., Zhang, M., and Taylor, D., Cloning and characterization of an acyl-CoA dependent diacylglycerol acyltransferase 1 (DGAT1) gene from Tropaeolum majus, and a study of the functional motifs of the DGAT protein using site-directed mutagenesis to modify enzyme activity and oil content, Plant Biotechnol. J., 2008, vol. 6, pp. 799–818.

    CAS  PubMed  Google Scholar 

  41. Yu, B., Wakao, S., Fan, J., and Benning, C., Loss of plastidic lysophosphatidic acid acyltransferase causes embryo-lethality in Arabidopsis, Plant Cell Physiol., 2004, vol. 45, pp. 503–510.

    CAS  PubMed  Google Scholar 

  42. Weier, D., Luhs, W.J., Dettendorfer, J., and Frentzen, M., sn-1-Acylglycerol-3-phosphate acyltransferase of Escherichia coli causes insertion of cis-11 eicosenoic acid into the sn-2 position of transgenic rapeseed oil, Mol. Breed., 1998, vol. 4, pp. 39–46.

    CAS  Google Scholar 

  43. Franca, M.G., Matos, A.R., Darcy-Lameta, A., Passaquet, C., Lichtlé, C., Zuily-Fodil, Y., and Pham-Thi, A.T., Cloning and characterization of drought stimulated phosphatidic acid phosphatase genes from Vigna unguiculata, Plant Physiol. Biochem., 2008, vol. 46, pp. 1093–1100.

    CAS  Google Scholar 

  44. Nakamura, Y., Tsuchiya, M., and Ohta, H., Plastidic phosphatidic acid phosphatases identified in a distinct subfamily of lipid phosphate phosphatases with prokaryotic origin, J. Biol. Chem., 2007, vol. 282, pp. 29013–29021.

    CAS  PubMed  Google Scholar 

  45. Pierrugues, O., Brutesco, C., Oshiro, J., Gouy, M., Deveaux, Y., Carman, G.M., Thuriaux, P., and Kazmaier, M., Lipid phosphate phosphatases in Arabidopsis. Regulation of the AtLPP1 gene in response to stress, J. Biol. Chem., 2001, vol. 276, pp. 20300–20308.

    CAS  PubMed  Google Scholar 

  46. Eastmond, P., Quettier, A., Kroon, J., Craddock, C., Adams, N., and Slabas, A., Phosphatidic acid phosphohydrolase 1 and 2 regulate phospholipid synthesis at the endoplasmic reticulum in Arabidopsis, Plant Cell, 2010, vol. 22, pp. 2796–2811.

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Siloto, R.M., Truska, M., Brownfield, D., Good, A.G., and Weselake, R.J., Directed evolution of acyl-CoA:diacylglycerol acyltransferase: development and characterization of Brassica napus DGAT1 mutagenized libraries, Plant Physiol. Biochem., 2009, vol. 47, pp. 456–461.

    CAS  PubMed  Google Scholar 

  48. Turkish, A.R., Henneberry, A.L., Cromley, D., Padamsee, M., Oelkers, P., Bazzi, H., Christiano, A.M., Billheimer, J.T., and Sturley, S.L., Identification of two novel human acyl-CoA wax alcohol acyltransferases: members of the diacylglycerol acyltransferase 2 (DGAT2) gene superfamily, J. 2 (DGAT2) gene superfamily, J. Biol. Chem., 2005, vol. 280, pp. 14755–14764.

    CAS  PubMed  Google Scholar 

  49. Cahoon, E.B., Shockey, J.M., Dietrich, C.R., Gidda, S.K., Mullen, R.T., and Dyer, J.M., Engineering oilseeds for sustainable production of industrial and nutritional feedstocks: solving bottlenecks in fatty acid flux, Curr. Opin. Plant Biol., 2007, vol. 10, pp. 236–244.

    CAS  PubMed  Google Scholar 

  50. Saha, S., Enugutti, B., Rajakumari, S., and Rajasekharan, R., Cytosolic triacylglycerol biosynthetic pathway in oilseeds. Molecular cloning and expression of peanut cytosolic diacylglycerol acyltransferase, Plant Physiol., 2006, vol. 141, pp. 1533–1543.

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Durrett, T.P., McClosky, D.D., Tumaney, A.W., Elzinga, D.A., Ohlrogge, J., and Pollard, M., A distinct DGAT with sn-3 acetyltransferase activity that synthesizes unusual, reduced viscosity oils in Euonymus and transgenic seeds, Proc. Natl. Acad. Sci. USA, 2010, vol. 107, pp. 9464–9469.

    CAS  PubMed  Google Scholar 

  52. Cases, S., Smith, S.J., Zheng, Y.W., Myers, H.M., Lear, S.R., Sande, E., Novak, S., Collins, C., Welch, C.B., Lusis, A.J., Erickson, S.K., and Farese, R.V., Jr., Identification of a gene encoding an acyl CoA:diacylglycerol acyltransferase, a key enzyme in triacylglycerol synthesis, Proc. Natl. Acad. Sci. USA, 1998, vol. 95, pp. 13 018–13 023.

    CAS  Google Scholar 

  53. Zou, J., Wei, Y., Jako, C., Kumar, A., Selvaraj, G., and Taylor, D.C., The Arabidopsis thaliana TAG1 mutant has a mutation in a diacylglycerol acyltransferase gene, Plant J., 1999, vol. 19, pp. 645–653.

    CAS  PubMed  Google Scholar 

  54. Bouvier-Nave, P., Benveniste, P., Oelkers, P., Sturley, S.L., and Schaller, H., Expression in yeast and tobacco of plant cDNAs encoding acyl CoA:diacylglycerol acyltransferase, Eur. J. Biochem., 2000, vol. 267, pp. 85–96.

    CAS  PubMed  Google Scholar 

  55. Lardizabal, K.D., Mai, J.T., Wagner, N.W., Wyrick, A., Voelker, T., and Hawkins, D.J., DGAT2 is a new diacylglycerol acyltransferase gene family: purification, cloning, and expression in insect cells of two polypeptides from Mortierella ramanniana with diacylglycerol acyltransferase activity, J. Biol. Chem., 2001, vol. 276, pp. 38862–38869.

    CAS  PubMed  Google Scholar 

  56. Cases, S., Stone, S.J., Zhou, P., Yen, E., Tow, B., Lardizabal, K.D., Voelker, T., and Farese, R.V., Jr., Cloning of DGAT2, a second mammalian diacylglycerol acyltransferase, and related family members, J. Biol. Chem., 2001, vol. 276, pp. 38870–38876.

    CAS  PubMed  Google Scholar 

  57. Shockey, J.M., Gidda, S.K., Chapital, D.C., Kuan, J.C., Dhanoa, P.K., Bland, J.M., Rothstein, S.J., Mullen, R.T., and Dyer, J.M., Tung tree DGAT1 and DGAT2 have nonredundant functions in triacylglycerol biosynthesis and are localized to different subdomains of the endoplasmic reticulum, Plant Cell, 2006, vol. 18, pp. 2294–2313.

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Stoveken, T., Kalscheuer, R., Malkus, U., Reichelt, R., and Steinbüchel, A., The wax ester synthase/acyl coenzyme A:diacylglycerol acyltransferase from Acinetobacter sp. strain ADP1: characterization of a novel type of acyltransferase, J. Bacteriol., 2005, vol. 187, pp. 1369–1376.

    PubMed Central  PubMed  Google Scholar 

  59. Mhaske, V., Beldjilali, K., Ohlrogge, J., and Pollard, M., Isolation and characterization of an Arabidopsis thaliana knockout line for phospholipid:diacylglycerol transacylase gene (At5g13640), Plant Physiol. Biochem., 2005, vol. 43, pp. 413–417.

    CAS  PubMed  Google Scholar 

  60. Jako, C., Kumar, A., Wei, Y., Zou, J., Barton, D.L., Giblin, E.M., Covello, P.S., and Taylor, D.C., Seedspecific over-expression of an Arabidopsis cDNA encoding a diacylglycerol acyltransferase enhances seed oil content and seed weight, Plant Physiol., 2001, vol. 126, pp. 861–874.

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Bates, P.D., Ohlrogge, J.B., and Pollard, M., Incorporation of newly synthesized fatty acids into cytosolic glycerolipids in pea leaves occurs via acyl editing, J. Biol. Chem., 2007, vol. 282, pp. 31206–31216.

    CAS  PubMed  Google Scholar 

  62. Dahlqvist, A., Stahl, U., Lenman, M., Banas, A., Lee, M., Sandager, L., Ronne, H., and Stymne, S., Phospholipid:diacylglycerol acyltransferase: an enzyme that catalyzes the acyl-CoA-independent formation of triacylglycerol in yeast and plants, Proc. Natl. Acad. Sci. USA, 2000, vol. 97, pp. 6487–6492.

    CAS  PubMed  Google Scholar 

  63. Oelkers, P., Cromley, D., Padamsee, M., Billheimer, J.T., and Sturley, S.L., The DGA1 gene determines a second triglyceride synthetic pathway in yeast, J. Biol. Chem., 2002, vol. 277, pp. 8877–8881.

    CAS  PubMed  Google Scholar 

  64. Stobart, K., Mancha, M., Lenman, M., Dahlqvist, A., and Stymne, S., Triacylglycerols are synthesized and utilized by transacylation reactions in microsomal preparations of developing safflower (Carthamus tinctorius L.), Planta, 1997, vol. 203, pp. 58–66.

    CAS  Google Scholar 

  65. McMaster, C.R. and Bell, R.M., CDP-choline:1,2-diacylglycerol choline phosphotransferase, Biochim. Biophys. Acta, 1997, vol. 1348, pp. 100–110.

    PubMed  Google Scholar 

  66. Lee, J., Welti, R., Schapaugh, W.T., and Trick, H.N., Phospholipid and triacylglycerol profiles modified by PLD suppression in soybean seed, Plant Biotechnol. J., 2011, vol. 9, pp. 359–372.

    CAS  PubMed  Google Scholar 

  67. Kagaya, Y., Toyoshima, R., Okuda, R., Usui, H., Yamamoto, A., and Hattori, T., LEAFY COTYLEDON1 controls seed storage protein genes through its regulation of FUSCA3 and ABSCISIC ACID INSENSITIVE3, Plant Cell Physiol., 2005, vol. 46, pp. 399–406.

    CAS  PubMed  Google Scholar 

  68. Hills, M.J., Control of storage-product synthesis in seeds, Curr. Opin. Plant Biol., 2004, vol. 7, pp. 302–308.

    CAS  PubMed  Google Scholar 

  69. Santos-Mendoza, M., Dubreucq, B., Baud, S., Parcy, F., Caboche, M., and Lepiniec, L., Deciphering gene regulatory networks that control seed development and maturation in Arabidopsis, Plant J., 2008, vol. 54, pp. 608–620.

    CAS  PubMed  Google Scholar 

  70. Cernac, A. and Benning, C., WRINKLED1 encodes an AP2/EREB domain protein involved in the control of storage compound biosynthesis in Arabidopsis, Plant J., 2004, vol. 40, pp. 575–585.

    CAS  PubMed  Google Scholar 

  71. Wang, H., Guo, J., Lambert, K.N., and Lin, Y., Developmental control of Arabidopsis seed oil biosynthesis, Planta, 2007, vol. 226, pp. 773–783.

    CAS  PubMed  Google Scholar 

  72. Baud, S., Mendoza, M., To, A., Harscoët, E., Lepiniec, L., and Dubreucq, B., WRINKLED1 specifies the regulatory action of LEAFY COTYLEDON2 towards fatty acid metabolism during seed maturation in Arabidopsis, Plant J., 2007, vol. 50, pp. 825–838.

    CAS  PubMed  Google Scholar 

  73. Mu, J., Tan, H., Zheng, Q., Fu, F., Liang, Y., Zhang, J., Yang, X., Wang, T., Chong, K., Wang, X.J., and Zuo, J., LEAFY COTYLEDON1 is a key regulator of fatty acid biosynthesis in Arabidopsis, Plant Physiol., 2008, vol. 148, pp. 1042–1054.

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Wang, H., Zhang, H., Hao, Y., Huang, J., Tian, A.G., Liao, Y., Zhang, J.S., and Chen, S.Y., The soybean Dof-type transcription factor genes, GmDof4 and GmDof11, enhance lipid content in the seeds of transgenic Arabidopsis plants, Plant J., 2007, vol. 52, pp. 716–729.

    CAS  PubMed  Google Scholar 

  75. Nikolau, B.J., Ohlrogge, J.B., and Wurtele, E.S., Plant biotin-containing carboxylases, Arch. Biochem. Biophys., 2003, vol. 414, pp. 211–222.

    CAS  PubMed  Google Scholar 

  76. Cahoon, E.B. and Ohlrogge, J.B., Apparent role of phosphatidylcholine in the metabolism of petroselinic acid in developing Umbelliferae endosperm, Plant Physiol., 1994, vol. 104, pp. 845–855.

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Suh, M., Schultz, D., and Ohlrogge, J., Isoforms of acyl carrier protein involved in seed specific fatty acid synthesis, Plant J., 1999, vol. 17, pp. 679–688.

    CAS  PubMed  Google Scholar 

  78. Frentzen, M., Acyltransferases and triacylglycerols, Lipid Metabolism in Plants, Moore, T.S., Ed., Moore T.S., Jr., Boca Raton, FL: CRC Press, 1993, pp. 195–230.

    Google Scholar 

  79. Wiberg, E., Tillberg, E., and Stymne, S., Substrates of diacylglycerol acyltransferase in microsomes from developing oil seeds, Phytochemistry, 1994, vol. 36, pp. 573–577.

    CAS  Google Scholar 

  80. Oo, K.C. and Huang, A.H.C., Lysophosphatidate acyltransferase activities in the microsomes from palm endosperm, maize scutellum, and rapeseed cotyledon of maturing seeds, Am. J. Plant Physiol., 1989, vol. 91, pp. 1288–1295.

    CAS  Google Scholar 

  81. Yatsu, L.Y. and Jacks, T.J., Spherosome membranes: half unit-membranes, Plant Physiol., 1972, vol. 49, pp. 937–943.

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Chapman, K.D., Dyer, J.M., and Mullen, R.T., Biogenesis and functions of lipid droplets in plants, J. Lipid Res., 2012, vol. 53, pp. 215–226.

    CAS  PubMed  Google Scholar 

  83. Murphy, D. and Vance, J., Mechanisms of lipid-body formation, Trends Biochem. Sci., 1999, vol. 24, pp. 109–115.

    CAS  PubMed  Google Scholar 

  84. Huang, A.H., Oil bodies and oleosins in seeds, Annu. Rev. Plant Physiol. Plant Mol. Biol., 1992, vol. 43, pp. 177–200.

    CAS  Google Scholar 

  85. Jolivet, P., Boulard, C., Bellamy, A., Larre, C., Barre, M., Rogniaux, H., d’Andréa, S., Chardot, T., and Nesi, N., Protein composition of oil bodies from mature Brassica napus seeds, Proteomics, 2009, vol. 9, pp. 3268–3284.

    CAS  PubMed  Google Scholar 

  86. Leprince, O., van Aelst, A.C., Pritchard, H.W., and Murphy, D.J., Oleosins prevent oilbody coalescence during seed imbibition as suggested by a low-temperature scanning electron microscope study of desiccation-tolerant and -sensitive oilseeds, Planta, 1998, vol. 204, pp. 109–119.

    CAS  Google Scholar 

  87. Poxleitner, M., Rogers, S.W., Samuels, A.L., Browse, J., and Rogers, J.C., A role for caleosin in degradation of oil-body storage lipid during seed germination, Plant J., 2006, vol. 47, pp. 917–933.

    CAS  PubMed  Google Scholar 

  88. Frandsen, G.I., Mundy, J., and Tzen, J.T., Oil bodies and their associated proteins, oleosin and caleosin, Physiol. Plant., 2001, vol. 112, pp. 301–307.

    CAS  PubMed  Google Scholar 

  89. Abell, B.M., Holbrook, L.A., Abenes, M., Murphy, D.J., Hills, M.J., and Moloney, M.M., Role of the proline knot motif in oleosin endoplasmic reticulum topology and oil body targeting, Plant Cell, 1997, vol. 9, pp. 1481–1493.

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Young, T.E. and Gallie, D.R., Regulation of programmed cell death in maize endosperm by abscisic acid, Plant Mol. Biol., 2000, vol. 42, pp. 397–414.

    CAS  PubMed  Google Scholar 

  91. Huang, A.H., Oleosins and oil bodies in seeds and other organs, Plant Physiol., 1996, vol. 110, pp. 1055–1061.

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Ross, J., Sanchez, J., Millan, F., and Murphy, D., Differential presence of oleosins in oleogenic seed and mesocarp tissues in olive (Olea europaea) and avocado (Persea americana), Plant Sci., 1993, vol. 93, pp. 203–210.

    CAS  Google Scholar 

  93. Vereshchagin, A., Ozerinina, O., and Tsydendambaev, V., Developmental changes in the triacylglycerol composition of sea buckthorn fruit mesocarp, J. Plant Physiol., 1999, vol. 155, pp. 453–461.

    CAS  Google Scholar 

  94. Garces, R., Sarmiento, C., and Mancha, M., Oleate from triacylglycerols is desaturated in cold-induced developing sunflower (Helianthus annuus L.) seeds, Planta, 1994, vol. 193, pp. 473–477.

    CAS  Google Scholar 

  95. Pleite, R., Pike, M.J., Garces, R., Martinez-Force, E., and Rawsthorne, S., The sources of carbon and reducing power for fatty acid synthesis in the heterotrophic plastids of developing sunflower (Helianthus annuus L.) embryos, J. Exp. Bot., 2005, vol. 56, pp. 1297–1303.

    CAS  PubMed  Google Scholar 

  96. Neuhaus, H.E. and Emes, M.J., Nonphotosynthetic metabolism in plastids, Annu. Rev. Plant Physiol. Plant Mol. Biol., 2000, vol. 51, pp. 111–140.

    CAS  PubMed  Google Scholar 

  97. Vigeolas, H., van Dongen, J.T., Waldeck, P., Huhn, D., and Geigenberger, P., Lipid storage metabolism is limited by the prevailing low oxygen concentrations within developing seeds of oilseed rape, Plant Physiol., 2003, vol. 133, pp. 2048–2060.

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Baud, S. and Graham, I.A., A spatiotemporal analysis of enzymatic activities associated with carbon metabolism in wild-type and mutant embryos of Arabidopsis using in situ histochemistry, Plant J., 2006, vol. 46, pp. 155–169.

    CAS  PubMed  Google Scholar 

  99. Eastmond, P.J. and Rawsthorne, S., Coordinate changes in carbon partitioning and plastidial metabolism during the development of oilseed rape embryos, Plant Physiol., 2000, vol. 122, pp. 767–774.

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Rolletschek, H., Koch, K., Wobus, U., and Borisjuk, L., Positional cues for the starch/lipid balance in maize kernels and resource partitioning to the embryo, Plant J., 2005, vol. 42, pp. 69–83.

    CAS  PubMed  Google Scholar 

  101. Ruuska, S.A., Schwender, J., and Ohlrogge, J., The capacity of green oilseeds to utilize photosynthesis to drive biosynthetic processes, Plant Physiol., 2004, vol. 136, pp. 2700–2709.

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Goffman, F.D., Alonso, A.P., Schwender, J., Shachar-Hill, Y., and Ohlrogge, J.B., Light enables a very high efficiency of carbon storage in developing embryos of rapeseed, Plant Physiol., 2005, vol. 138, pp. 2269–2279.

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Browse, J. and Slack, C.R., Fatty-acid synthesis in plastids from maturing safflower and linseed cotyledons, Planta, 1985, vol. 166, pp. 74–80.

    CAS  PubMed  Google Scholar 

  104. Allen, D.G., Ohlrogge, J.B., and Shachar-Hill, Y., The role of light in soybean seed filling metabolism, Plant J., 2009, vol. 58, pp. 220–234.

    CAS  PubMed  Google Scholar 

  105. Alonso, A.P., Goffman, F.D., Ohlrogge, J.B., and Shachar-Hill, Y., Carbon conversion efficiency and central metabolic fluxes in developing sunflower (Helianthus annuus L.) embryos, Plant J., 2007, vol. 52, pp. 296–308.

    CAS  PubMed  Google Scholar 

  106. Schwender, J., Shachar-Hill, Y., and Ohlrogge, J., Mitochondrial metabolism in developing embryos of Brassica napus, J. Biol. Chem., 2006, vol. 281, pp. 34 040–34 047.

    CAS  Google Scholar 

  107. Borisjuk, L., Nguyen, T.H., Neuberger, T., Rutten, T., Tschiersch, H., Claus, B., Feussner, I., Webb, A.G., Jakob, P., Weber, H., Wobus, U., and Rolletschek, H., Gradients of lipid storage, photosynthesis and plastid differentiation in developing soybean seeds, New Phytol., 2005, vol. 167, pp. 761–776.

    CAS  PubMed  Google Scholar 

  108. Schwender, J., Goffman, F., Ohlrogge, J., and Shachar-Hill, Y., Rubisco without the Calvin cycle improves the carbon efficiency of developing green seeds, Nature, 2004, vol. 432, pp. 779–782.

    CAS  PubMed  Google Scholar 

  109. Dybing, C.D. and Zimmerman, D.C., Fatty acid accumulation in maturing flaxseeds as influenced by environment, Plant Physiol., 1966, vol. 41, pp. 1465–1470.

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Tremolieres, A., Dubacq, J.-P., and Drapier, D., Unsaturated fatty acids in maturing seeds of sunflower and rape: regulation by temperature and light intensity, Phytochemistry, 1982, vol. 21, pp. 41–45.

    CAS  Google Scholar 

  111. Knowles, P.F., The plant geneticist’s contribution toward changing lipid and amino acid composition of safflower, J. Am. Oil Chem. Soc., 1972, vol. 49, pp. 27–29.

    CAS  Google Scholar 

  112. Wolf, R.B., Cavins, J.F., Kleiman, R., and Black, L.T., Effect of temperature on soybean seed constituents: oil, protein, moisture, fatty acids, amino acids and sugars, J. Am. Oil Chem. Soc., 1982, vol. 59, pp. 230–232.

    CAS  Google Scholar 

  113. Lajara, J.R., Diaz, U., and Quidiello, D.R., Definite influence of location and climatic conditions on the fatty acid composition of sunflower seed oil, J. Am. Oil Chem. Soc., 1990, vol. 67, pp. 618–623.

    CAS  Google Scholar 

  114. Rolletschek, H., Borisjuk, L., Sanchez-Garcia, A., Gotor, C., Romero, L.C., Martinez-Rivas, J.M., and Mancha, M., Temperature-dependent endogenous oxygen concentration regulates microsomal oleate desaturase in developing sunflower seeds, J. Exp. Bot., 2007, vol. 58, pp. 3171–3181.

    CAS  PubMed  Google Scholar 

  115. Martinez-Rivas, J.M., Sanchez-Garcia, A., Sicardo, M.D., Garcia-Diaz, M.T., and Mancha, M., Oxygen-independent temperature regulation of the microsomal oleate desaturase (FAD2) activity in developing sunflower (Helianthus annuus) seeds, Physiol. Plant., 2003, vol. 117, pp. 179–185.

    CAS  Google Scholar 

  116. Esteban, A.B., Sicardo, M.D., Mancha, M., and Martinez-Rivas, J.M., Growth temperature control of the linoleic acid content in safflower (Carthamus tinctorius) seed oil, J. Agric. Food Chem., 2004, vol. 52, pp. 332–336.

    CAS  PubMed  Google Scholar 

  117. Byfield, G.E. and Upchurch, R.G., Effect of temperature on delta-9 stearoyl-ACP and microsomal omega-6 desaturase gene expression and fatty acid content in developing soybean seeds, Crop Sci., 2007, vol. 47, pp. 1698–1704.

    CAS  Google Scholar 

  118. Iyer, V.V., Sriram, G., Fulton, D.B., Zhou, R., Westgate, M.E., and Shanks, J.V., Metabolic flux maps comparing the effect of temperature on protein and oil biosynthesis in developing soybean cotyledons, Plant Cell Environ., 2008, vol. 31, pp. 506–517.

    CAS  PubMed  Google Scholar 

  119. Kaufmann, H. and Keller, M., Über das Vorkommen von Parinarsäure und Essigsäure in den Samenfetten der Balsaminaceen, Chem. Ber., 1948, vol. 81, pp. 152–158.

    CAS  Google Scholar 

  120. Nozzolillo, C., Rahal, Í., and Liljenberg, C., Lipid reserves of seeds of Impatiens capensis and I. pallida (Balsaminaceae): developmental aspects, Am. J. Bot., 1986, vol. 73, pp. 96–102.

    CAS  Google Scholar 

  121. Spitzer, V. and Aichholz, R., Analysis of naturally occurring α-acetotriacylglycerides by gas chromatography-chemical ionization mass spectrometry, J. High Resolut. Chromatogr., 1996, vol. 19, pp. 497–502.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. D. Tsydendambaev.

Additional information

Original Russian Text © R.A. Sidorov, V.D. Tsydendambaev, 2014, published in Fiziologiya Rastenii, 2014, Vol. 61, No. 1, pp. 3–22.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sidorov, R.A., Tsydendambaev, V.D. Biosynthesis of fatty oils in higher plants. Russ J Plant Physiol 61, 1–18 (2014). https://doi.org/10.1134/S1021443714010130

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443714010130

Keywords

Navigation