Skip to main content
Log in

Physiological features of rapeseed plants expressing the gene for an antimicrobial peptide cecropin P1

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Transgenic rapeseed (Brassica napus L.) plants carrying an artificial gene for the antimicrobial peptide cecropin P1 (cecP1) were obtained and characterized. The agrobacterial transformation was done by vacuum infiltration of seeds with agrobacterium GV3101(pMP90RK) containing a binary vector pGA482::cecP1. The cec1 gene expression was analyzed by Western blotting and confirmed by antimicrobial activity measurements of plant extracts. The obtained plants showed the resistance to the bacterial and fungal pathogens Erwinia carotovora and Fusarium sporotrichioides. The photosynthetic activities of control and transgenic plants under biotic stress conditions of E. carotovora infection were comparatively studied. The higher tolerance of the cecP1 plants to the oxidative stress caused by paraquat was shown. The results obtained point to the possibility of incorporation of the cecropin P1 gene into the integral stress protection system of plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

cecP1:

cecropin P1

DETC:

diethylthiocarbamate

DF:

delayed fluorescence of chlorophyll a

Km:

kanamycin

NBT:

nitoblue tetrazolium

nptII :

neomycintransferase II

SOD:

superoxide dismutase

References

  1. Chavadej, S., Brisson, N., McNeil, J.N., and Luca, V., Redirection of Tryptophan Leads to Production of Low Indole Glucosinolate Canola, Proc. Natl. Acad. Sci. USA, 1994, vol. 91, pp. 2166–2170.

    Article  PubMed  CAS  Google Scholar 

  2. Falco, S.C., Guida, T., Locke, M., Mauvais, T., Sanders, C., Ward, R.T., and Webber, P., Transgenic Canola and Soybean Seeds with Increased Lysine, Biotechnology, 1995, vol. 13, pp. 577–582.

    Article  PubMed  CAS  Google Scholar 

  3. Grison, R., Grezes-Besset, B., Schneider, M., Lucante, N., Olsen, L., Leguay, J.J., and Toppan, A., Field Tolerance to Fungal Pathogens of Brassica napus Constitutively Expressing a Chimeric Chitinase Gene, Nat. Biotechnol., 1996, vol. 14, pp. 643–646.

    Article  PubMed  CAS  Google Scholar 

  4. Carpenter, J. and Gianessi, L., Herbicide Use on Roundup Ready Crops, Science, 2000, vol. 287, pp. 803–804.

    Article  PubMed  CAS  Google Scholar 

  5. Parashina, E.V., Serdobinskii, L.A., Kalle, E.G., Lavrova, N.V., Avetisov, V.A., Lunin, V.G., and Naroditskii, B.S., Genetic Engineering of Oilseed Rape and Tomato Plants Expressing a Radish Defensin Gene, Russ. J. Plant Physiol., 2000, vol. 47, pp. 417–423.

    CAS  Google Scholar 

  6. Zakharchenko, N.S., Rukavtsova, E.B., Gudkov, A.T., and Buryanov, Ya.I., Enhanced Resistance to Phytopathogenic Bacteria in Transgenic Tobacco Plants with Synthetic Gene of Antimicrobial Peptide Cecropin P1, Russ. J. Genetics, 2005, vol. 41, pp. 1187–1193.

    Article  CAS  Google Scholar 

  7. Murashige, T. and Skoog, F., A Revised Medium for Rapid Growth and Bioassays with Tobacco Cultures, Physiol. Plant., 1962, vol. 15, pp. 473–497.

    Article  CAS  Google Scholar 

  8. An, G., Ebert, P., Mitra, A., and Ha, S.B., Binary Vectors, Plant Molecular Biology Manual, Gelvin, S.B., Schilperoort, R.A., and Verma, D.P, Eds., Dordrecht: Kluwer, 1988, Ch. A3, pp. 1–19.

    Google Scholar 

  9. Martemyanov, K.A., Shirokov, V.A., Kurnasov, O.V., Gudkov, A.T., and Spirin, A.S., Cell-Free Production of Biologically Active Polypeptides: Application to the Synthesis of Antibacterial Peptide Cecropin, Protein Expres. Pur., 2001, vol. 21, pp. 456–461.

    Article  CAS  Google Scholar 

  10. Maniatis, T., Frisch, E.F., and Sambrook, J., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor: Cold Spring Harbor Lab., 1982.

    Google Scholar 

  11. Bechtold, D., Ellis, J., and Pelletier, G., In Planta Agrobacterium Mediated Gene Transfer by Infiltration of Adult Arabidopsis thaliana Plants, C.R. Acad. Sci., Life Sci., 1993, vol. 316, pp. 1194–1199.

    CAS  Google Scholar 

  12. Edwards, K., Johnstone, C., and Thompson, C., A Simple and Rapid Method for the Preparation of Plant Genomic DNA for PCR Analysis, Nucleic Acids Res., 1991, vol. 19, pp. 1349–1351.

    Article  PubMed  CAS  Google Scholar 

  13. Jan, P.S., Huang, H.Y., and Chen, H.M., Expression of a Synthesized Gene Encoding Cationic Peptide Cecropin B in Transgenic Tomato Plants Protects against Bacterial Diseases, Appl. Environ. Microbiol., 2010, vol. 2, pp. 769–775.

    Article  Google Scholar 

  14. Schagger, H. and von Jagow, G., Tricine-Sodium Dodecyl Syfate-Polyacrylamide Gel Electrophoresis for the Separation of Proteins in the Range from 1 to 100 kDa, Anal. Biochem., 1987, vol. 166, pp. 368–379.

    Article  PubMed  CAS  Google Scholar 

  15. Ohshima, M., Mitruhara, I., Okamoto, M., Sawano, S., Nishiyama, K., Kaku, H., Natori, S., and Ohashi, Y., Enhanced Resistance to Bacterial Diseases of Transgenic Tobacco Plants Overexpressing Sarcotoxin IA, a Bactericidal Peptide of Insect, J. Biochem., 1999, vol. 125, pp. 431–435.

    Article  PubMed  CAS  Google Scholar 

  16. Draper, J., Scott, R., and Hamil, J., Plant Genetic Transformation and Gene Expression, A Laboratory Manual, Draper, J., Scott, R., and Armitage, P., Walden, R., Eds., Oxford: Blackwell Sci. Publ., 1988, pp. 69–160.

    Google Scholar 

  17. Priol, J.L. and Chartier, P., Partitioning of Transfer and Carboxylation Components of Intracellular Resistance to Photosynthetic CO2 Fixation: A Critical Analysis of the Methods Used, Ann. Bot., 1977, vol. 41, pp. 789–800.

    Google Scholar 

  18. Lavorel, J., Fast and Slow Phases of Luminescence in Chlorella, Photochem. Photobiol., 1975, vol. 21, pp. 331–343.

    Article  PubMed  CAS  Google Scholar 

  19. Bigler, W. and Schreiber, U., Chlorophyll Luminescence as an Indicator of Stress-Induced Damage to the Photosynthetic Apparatus. Effects of Heat-Stress in Isolated Chloroplasts, Photosynth. Res., 1990, vol. 25, pp. 161–171.

    Article  Google Scholar 

  20. Veselovskii, V.A. and Veselova, T.V., Lyuminestsentsiya rastenii (Plant Luminescence), Moscow: Nauka, 1990.

    Google Scholar 

  21. Goltsev, V., Chernev, P., Zaharieva, I., Lambrev, P., and Strasser, R.J., Kinetics of Delayed Chlorophyll a Fluorescence Registered in Milliseconds Time Range, Photosynth. Res., 2005, vol. 84, pp. 209–215.

    Article  PubMed  CAS  Google Scholar 

  22. Bellincampi, D., Dipierro, N., Salvi, G., Cervone, F., and de Lorenzo, G., Extracellular H2O2 Induced by Oligogalacturonides Is Not Involved in the Inhibition of the Auxin-Regulated rolB Gene Expression in Tobacco Leaf Explants, Plant Physiol., 2000, vol. 122, pp. C. 1379–1385.

    Article  Google Scholar 

  23. Chaitanya, K.S.K., Naithani, S.C., and Faertn, F., Role of Superoxide Lipid Peroxidation and Superoxide Dismutation in Membrane Perturbation during Loss of Viability in Seeds of Shorea robusta, New Phytol., 1994, vol. 126, pp. 623–627.

    Article  CAS  Google Scholar 

  24. Beauchamp, C.O. and Fridovich, I., Superoxide Dismutase: Improved Assays and an Assay Applicable to Acrylamide Gels, Ana. Biochem., 1971, vol. 44, pp. 276–287.

    Article  CAS  Google Scholar 

  25. Wraight, C.A. and Crofts, A.R., Delayed Fluorescence and Light-Energy State of Chloroplasts, Eur. J. Biochem., 1971, vol. 19, pp. 386–397.

    Article  PubMed  CAS  Google Scholar 

  26. Zakharchenko, N.S., Rukavtsova, E.B., Gudkov, A.T., Yukhmanova, A.A., Shkolnaya, L.A., Kado, K.I., and Buryanov, Ya.I., Expression of the Artificial Gene Encoding Anti-Microbial Peptide Cecropin P1 Increases the Resistance of Transgenic Potato Plants to Potato Blight and White Rot, Dokl. Biol. Sci., 2007, vol. 415, pp. 267–269.

    Article  PubMed  CAS  Google Scholar 

  27. Zakharchenko, N.S., Lebedeva, A.A., and Buryanov, Ya.I., Technique for Production of Transgenic Kalanchoe Plants Expressed Cecropin P1 Gene, RF Patent no. 2445768, Byull. Izobret., 2012, no. 9.

    Google Scholar 

  28. Mittova, V., Tal, M., Volokita, M., and Guy, M., UpRegulation of the Leaf Mitochondrial and Peroxisomal Antioxidative Systems in Response to Salt-Induced Oxidative Stress in the Wild Salt-Tolerant Tomato Species Lycopersicon pennellii, Plant Cell Environ., 2003, vol. 26, pp. 845–856.

    Article  PubMed  CAS  Google Scholar 

  29. Kreslavskii, V.D., Los, D.A., Allakhverdiev, S.I., and Kuznetsov, Vl.V., Signaling Role of Reactive Oxygen Species in Plants under Stress, Russ. J. Plant Physiol., 2012, vol. 59, pp. 141–154.

    Article  Google Scholar 

  30. Campo, S., Manrique, S., Garcia-Martinez, J., and San Segundo, S., Production of Cecropin A in Transgenic Rice Plants Has an Impact on Host Gene Expression, Plant Biotechnol. J., 2008, vol. 6, pp. 585–608.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Zakharchenko.

Additional information

Original Russian Text © N.S. Zakharchenko, Ya.I. Buryanov, A.A. Lebedeva, S.V. Pigoleva, D.V. Vetoshkina, E.V. Loktyushov, M.A. Chepurnova, V.D. Kreslavski, A.A. Kosobryukhov, 2013, published in Fiziologiya Rastenii, 2013, Vol. 60, No. 3, pp. 424–433.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zakharchenko, N.S., Buryanov, Y.I., Lebedeva, A.A. et al. Physiological features of rapeseed plants expressing the gene for an antimicrobial peptide cecropin P1. Russ J Plant Physiol 60, 411–419 (2013). https://doi.org/10.1134/S1021443713030163

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443713030163

Keywords

Navigation