Skip to main content
Log in

Pollination-induced floral senescence in orchids: Status of oxidative stress

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The orchid flowers may stay fresh in unpollinated state from few weeks to months but show rapid senescence upon pollination. Metabolic changes related to this phenomenon are less well understood in orchid flowers. Presently, two orchid species, Aerides multiflora Roxb. and Rhynchostylis retusa (L.) Bl., varying in their floral life span were evaluated for their postpollination-induced responses, involving the oxidative stress. The unpollinated flowers of A. multiflora stayed fresh for 17 days and attained senescence in 5 days after pollination (DAP), while those of R. retusa. remained fresh for 24 days and showed senescence in 7 DAP. After pollination, wilting began in 2 to 3 days in A. multiflora and 3 to 4 days in R. retusa. There was a higher electrolyte leakage accompanied by a concomitant increase in the levels of malondialdehyde (MDA) and hydrogen peroxide (H2O2), indicators of oxidative damage in all the organs after pollination while ascorbic acid decreased significantly. The flowers of A. multiflora showed a greater electrolyte leakage, MDA and H2O2 contents as compared to those of R. retusa. Ascorbic acid content, on the other hand, was lower in A. multiflora than in R. retusa, suggesting a higher oxidative damage to the floral organs in the former species. An application of triiodobenzoic acid ( an auxin inhibitor; 0.25 mM) and silver nitrate (ethylene inhibitor; 0.25 mM) to pollinated flowers partially prevented the oxidative damage and consequently the senescence, suggesting the involvement of these hormones. AgNO3 was more effective in delaying senescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ACC:

1-aminocyclopropane-1-carboxylic acid

ASC:

ascorbic acid

DAP:

days after pollination

HAP:

hours after pollination

MDA:

malondialdehyde

TIBA:

triiodobenzoic acid

References

  1. O’Neill, S.D., Nadeau, J.A., Zhang, X.S., Bui, A.Q., and Halevy, A.H., Inter-Organ Regulation of Ethylene Biosynthetic Genes by Pollination, Plant Cell, 1993, vol. 5, pp. 419–432.

    Article  PubMed  CAS  Google Scholar 

  2. Zhang, X.S. and O’Neill, S.D., Ovary and Gametophyte Development Are Co-Ordinately Regulated Following Pollination by Auxin and Ethylene, Plant Cell, 1993, vol. 5, pp. 403–418.

    Article  PubMed  CAS  Google Scholar 

  3. O’Neill, S.D., Pollination Regulation of Flower Development, Annu. Rev. Plant Physiol. Plant Mol. Biol., 1997, vol. 48, pp. 547–574.

    Article  PubMed  CAS  Google Scholar 

  4. Ketsa, S. and Rugkong, A., Senescence of Dendrobium “Pompadour” Flowers Following Pollination, J. Hortic. Sci. Biotech., 1999, vol. 74, pp. 608–613.

    Google Scholar 

  5. Suttle, J.C. and Kende, H., Ethylene and Senescence in Petals of Tradescantia, Plant Physiol., 1978, vol. 65, pp. 1067–72.

    Google Scholar 

  6. Celikel, F.G. and van Doorn, W.G., Solute Leakage, Lipid Peroxidation and Protein Degradation during the Senescence of Iris Tepals, Physiol. Plant., 1995, vol. 94, pp. 515–521.

    Article  CAS  Google Scholar 

  7. Thompson, J.E., Froese, C.D., Madey, E., Smith, M.D., and Hong, Y., Lipid Metabolism during Plant Senescence, Prog. Lipid Res., 1998, vol. 37, pp. 119–141.

    Article  PubMed  CAS  Google Scholar 

  8. Hilioti, Z., Richards, C., and Brown, K.M., Regulation of Pollination Induced Ethylene and Its Role in Petal Abscission of Pelargonium hortum, Physiol. Plant., 2000, vol. 109, pp. 322–332.

    Article  CAS  Google Scholar 

  9. Bui, A.Q. and O’Neill, S.D., Three 1-Aminocyclopropane-1-Carboxylate Synthase Genes Regulated by Primary and Secondary Pollination Signals in Orchid Flowers, Plant Physiol., 1998, vol. 116, pp. 419–428.

    Article  PubMed  CAS  Google Scholar 

  10. Van Doorn, W.G., Effect of Pollination on Floral Attraction and Longevity, J. Exp. Bot., 1997, vol. 48, pp. 1615–1622.

    Google Scholar 

  11. Lutts, S., Kinet, J.M., and Bouharmont, J., NaCl-Induced Senescence in Leaves of Rice (Oryza sativa L.) Cultivars Differing in Salinity Resistance, Ann. Bot., 1996, vol. 78, pp. 389–398.

    Article  CAS  Google Scholar 

  12. Dhindsa, R.S., Dhindsa, P.P., and Thorpe, T.A., Leaf Senescence Correlated with Increase Levels of Membrane Permeability and Lipid Peroxidation and Decrease Level of Superoxide Dismutase and Catalase, J. Exp. Bot., 1981, vol. 32, pp. 93–101.

    Article  CAS  Google Scholar 

  13. Mukherjee, S.P. and Choudhuri, M.A., Implication of Water Stress Induced Changes in the Level of Endogenous Ascorbic Acid and H2O2 in Vigna Seedlings, Physiol. Plant., 1983, vol. 58, pp. 166–170.

    Article  CAS  Google Scholar 

  14. Teranishi, Y., Tanaka, A., Osumi, M., and Fukui, S., Catalase Activity of Hydrocarbon Utilizing Candida Yeast, Agric. Biol. Chem., 1974, vol. 38, pp. 1213–1216.

    CAS  Google Scholar 

  15. Arditti, J., Fundamentals of Orchid Biology, New York: John Wiley and Sons, 1992.

    Google Scholar 

  16. Weiss, M.R., Floral Colour Changes as Cues for Pollinators, Nature, 1991, vol. 354, pp. 227–229.

    Article  Google Scholar 

  17. Porat, R., Borochov, A., Halevy, A.H., and O’Neill, S.D., Pollination Induced Senescence of Phalaenopsis Petals. The Wilting Process, Ethylene Production and Sensitivity to Ethylene, Plant Growth Regul., 1994, vol. 15, pp. 129–136.

    Article  CAS  Google Scholar 

  18. Xu-Yan, M.R. and Hanson, Y.X., Programmed Cell Death during Pollination Induced Petal Senescence in Petunia, Plant Physiol., 2000, vol. 122, pp. 1323–1333.

    Article  Google Scholar 

  19. Fobel, M., Lynch, D.V., and Thompson, J.E., Membrane Deterioration in Senescing Carnation Flowers, Plant Physiol., 1987, vol. 85, pp. 204–211.

    Article  PubMed  CAS  Google Scholar 

  20. Lesham, Y.Y., Membrane-Associated Phospholytic and Lipolytic Enzymes, Plant Membranes: A Biophysical Approach to Structure, Development and Senescence, Lesham, Y.Y., Ed., Dordrecht: Kluwer, 1992, pp. 174–191.

    Google Scholar 

  21. Thompson, J.E., Legge, R.L., and Barber, R.F., The Role of Free Radical in Senescence and Wounding, New Phytol., 1987, vol. 105, pp. 317–344.

    Article  CAS  Google Scholar 

  22. Panavas, T. and Rubinstein, B., Oxidative Events during Programmed Cell Death of Daylilly (Hemerocallis Hybrid) Petals, Plant Sci., 1998, vol. 133, pp. 125–138.

    Article  CAS  Google Scholar 

  23. Fukuchi-Mizutani, M., Ishiguro, K., Nakayama, T., Utsunomiya, Y., Tanaka, Y., Kusumi, T., and Ueda, T., Molecular and Functional Characterization of a Rose Lipoxygenase cDNA Related to Flower Senescence, Plant Sci., 2000, vol. 160, pp. 129–137.

    Article  PubMed  CAS  Google Scholar 

  24. Asada, K. and Takahanshi, M., Production and Scavenging of Active Oxygen in Photosynthesis, Photoinhibition, Kyle, D.J., Osmand, C.B., and Amtzen, C.J., Eds., Amsterdam: Elsevier, 1987, pp. 227–287.

    Google Scholar 

  25. Halliwel, B., Oxidative Damage, Lipid Peroxidation and Antioxidant Protection in Chloroplasts, Chem. Phys. Lipids, 1987, vol. 44, pp. 327–340.

    Article  Google Scholar 

  26. Bowler, C., van Montagu, M., and Inze, D., Superoxide Dismutase and Stress Tolerance, Annu. Rev. Plant Physiol. Plant Mol. Biol., 1992, vol. 43, pp. 83–116.

    Article  CAS  Google Scholar 

  27. Lin, J.N. and Kao, C.H., Effect of Oxidative Stress Caused by Hydrogen Peroxide on Senescence of Rice Leaves, Bot. Bull. Acad. Sinica, 1998, vol. 39, pp. 161–165.

    CAS  Google Scholar 

  28. Noctor, G. and Foyer, C.H., Ascorbate and Glutathione: Keeping Active Oxygen under Control, Annu. Rev. Plant Physiol. Plant Mol. Biol., 1998, vol. 49, pp. 249–279.

    Article  PubMed  CAS  Google Scholar 

  29. Prochazkova, D., Sairam, R.K., Srivastava, G.C., and Singh, D.V., Oxidative Stress and Antioxidant Activity as the Basis of Senescence in Maize Leaves, Plant Sci., 2001, vol. 161, pp. 765–771.

    Article  CAS  Google Scholar 

  30. Jones, M.L. and Woodson, W.R., Pollination Induced Ethylene in Carnation. Role of Stylar Ethylene in Corolla Senescence, Plant Physiol., 1997, vol. 115, pp. 205–212.

    PubMed  CAS  Google Scholar 

  31. Ketsa, S., Rugkong, A., Saichol, K., and Adirak, R., Ethylene Production, Senescence and Ethylene Sensitivity of Dendrobium ‘Pampadour’ Flowers Following Pollination, J. Hortic. Sci. Biotech., 2000, vol. 75, pp. 149–153.

    CAS  Google Scholar 

  32. Atti, L.K., Nayyar, H., Bhanwra, R.K., and Viy, S.P., Post Pollination Related Biochemical Change in Floral Organs of Rhynchostylis retusa (L.) Bl. and Aerides multiflora Roxb. (Orchidaclal), J. Plant Biol., 2007, vol. 50(5), pp. 548–556.

    Google Scholar 

  33. Atti, L.K., Nayyar, H., Bhanwra, R.K., and Pehwal, A., Pollination_Jnduced Oxidative Atress in Floral Organs of Cymbidium pendulum (Roxb.) Sw. and Cymbidium alofolium (L.) Sw. (Orchidaclal): A Biochemical Jnvestigation, Sci. Hortic., 2008, vol. 116, pp. 311–317.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. K. Attri.

Additional information

Original Russian Text © L.K. Attri, H. Nayyar, R.K. Bhanwra, S.P. Vij, 2008, published in Fiziologiya Rastenii, 2008, Vol. 55, No. 6, pp. 908–915.

This text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Attri, L.K., Nayyar, H., Bhanwra, R.K. et al. Pollination-induced floral senescence in orchids: Status of oxidative stress. Russ J Plant Physiol 55, 821–828 (2008). https://doi.org/10.1134/S1021443708060125

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443708060125

Key words

Navigation