Skip to main content
Log in

Molecular Dynamics Simulation of the Behavior of Protonated Poly(ethylene oxide)s in Drift Tube Experiments

  • THEORY AND SIMULATION
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

The drift of singly protonated poly(ethylene oxide)s in helium under the action of an electrostatic field is simulated by the molecular dynamic method. The polymer chains are long, from 40 to 160 monomer units. The field strength is in the range from ~105 to ~107 V/m, the gas pressure varies from ~0.5 to ~6 atm. The ion mobility is obtained from the simulated drift velocity. The reduced mobility is approximately constant in all but the strongest fields and does not depend on the gas pressure. An increase in the polymer chain length leads to the expected decrease in mobility. The collision cross section is calculated in the simplest approximation using the simulated ion temperature as the effective temperature characterizing the energy of ion-gas collisions. The limits of applicability of this approximation are determined using the cross-sectional area of the ion obtained from the drag coefficient. In contrast to the size of the ion, the collision cross section decreases with increasing ion temperature, which agrees with the experimental results for a number of singly charged oligomers. The reasons for this effect are discussed. The effect of random ion diffusion on the simulated drift velocity and mobility is characterized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. S. Ehlert, A. Walte, and R. Zimmermann, Anal. Chem. 85, 11047 (2013).

    CAS  PubMed  Google Scholar 

  2. J. Puton and J. Namieśnik, Trends Anal. Chem. 85, 10 (2016).

    CAS  Google Scholar 

  3. S. Armenta, F. A. Esteve-Turrillasa, and M. Alcalàb, Anal. Methods 12, 1163 (2020).

    CAS  Google Scholar 

  4. M. Hernández-Mesa, D. Ropartz, A. M. García-Campaña, H. Rogniaux, G. Dervilly-Pinel, and B. Le Bizec, Molecules 24, 2706 (2019).

    PubMed Central  Google Scholar 

  5. R. M. O’Donnell, X. Sun, and P. Harrington, Trends Anal. Chem. 27, 44 (2008).

    Google Scholar 

  6. F. Lanucara, S. W. Holman, C. J. Gray, and C. E. Eyers, Nat. Chem. 6, 281 (2014).

    CAS  PubMed  Google Scholar 

  7. Q. Duez, S. Hoyas,T. Josse, J. Cornil, P. Gerbaux, and J. De Winter, Mass Spectrom. Rev., e21745 (2021). https://doi.org/10.1002/mas.21745

  8. M. Karas, D. Bachmann, U. Bahr, and F. Hillenkamp, Int. J. Mass Spectrom. Ion Processes 78, 53 (1987).

    CAS  Google Scholar 

  9. F. Hillenkamp and J. Peter-Katalinic, MALDI MS: A Practical Guide to Instrumentation, Methods and Applications (Wiley-VCH, Weinheim, 2007).

    Google Scholar 

  10. B. Fenn, M. Mann, C. K. Meng, S. F. Wong, and C. M. Whitehouse, Science 246 (4926), 64 (1989).

    CAS  PubMed  Google Scholar 

  11. A. A. Shvartsburg, Differential Ion Mobility Spectrometry (CRC Press, Boca Raton, Florida, 2009).

    Google Scholar 

  12. J. S. Prell, Compr. Anal. Chem. 83, 1 (2019).

    Google Scholar 

  13. R. Lai, E. D. Dodds, and H. Li, J. Chem. Phys. 148, 064109 (2018).

  14. E. W. McDaniel and E. A. Mason, The Mobility and Diffusion of Ions in Gases (Wiley, New York, 1973).

    Google Scholar 

  15. E. A. Mason and E. W. McDaniel, Transport Properties of Ions in Gases (Wiley, New York, 1988).

    Google Scholar 

  16. L. A. Viehland and E. A. Mason, Ann. Phys. 110, 287 (1978).

    CAS  Google Scholar 

  17. L. A. Viehland and E. A. Mason, Ann. Phys. 91, 499 (1975).

    CAS  Google Scholar 

  18. C. Larriba-Andaluz and J. S. Prell, Int. Rev. Phys. Chem. 39, 569 (2020).

    CAS  Google Scholar 

  19. Y.-L. Chen, B. A. Collings, and D. J. Douglas, J. Am. Soc. Mass Spectrom. 8, 681 (1997).

    CAS  Google Scholar 

  20. S. A. Dubrovskii and N. K. Balabaev, Polym. Sci., Ser. A 63, 891 (2021).

    CAS  Google Scholar 

  21. M. N. Kogan, Rarefied Gas Dynamics (Springer Science+Business Media, New York, 1969).

  22. H. Ashley, J. Aeronaut. Sci. 16, 95 (1949).

    Google Scholar 

  23. A. S. Lemak and N. K. Balabaev, Mol. Simul. 15, 223 (1995).

    CAS  Google Scholar 

  24. A. S. Lemak and N. K. Balabaev, J. Comput. Chem. 17, 1685 (1996).

    CAS  Google Scholar 

  25. J. R. Hill, J. Sauer, J. Phys. Chem. 99, 9536 (1995).

    CAS  Google Scholar 

  26. S. A. Dubrovskii and N. K. Balabaev, Polym. Sci., Ser. A 60, 404 (2018).

    CAS  Google Scholar 

  27. R. Johnsen, R. Tosh, and L. A. Viehland, J. Chem. Phys. 92, 7264 (1990).

    CAS  Google Scholar 

  28. J. Gidden, T. Wyttenbach, A. T. Jackson, J. H. Scrivens, and M. T. Bowers, J. Am. Chem. Soc. 122, 4692 (2000).

    CAS  Google Scholar 

  29. C. Bleiholder, N. R. Johnson, S. Contreras, T. Wyttenbach, and M. T. Bowers, Anal. Chem. 87, 7196 (2015).

    CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

Calculations were performed using supercomputers at Keldysh Institute of Applied Mathematics of Russian Academy of Sciences and Joint Supercomputer Center of Russian Academy of Sciences.

Funding

This work was carried out within the framework of the Program of Fundamental Scientific Research of the Russian Federation and was supported by the state budget.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Dubrovskii.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubrovskii, S.A., Balabaev, N.K. Molecular Dynamics Simulation of the Behavior of Protonated Poly(ethylene oxide)s in Drift Tube Experiments. Polym. Sci. Ser. A 64, 549–558 (2022). https://doi.org/10.1134/S0965545X22700201

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X22700201

Navigation