Skip to main content
Log in

Morphological Variation of the Poly(ε-caprolactone) Crystals in Bulk, Thin and Ultrathin Films of Poly(ε-caprolactone)/Poly(vinyl methyl ether) Blends

  • POLYMER BLENDS
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

Bulk, thin and ultrathin films with different thicknesses of neat poly(ε-caprolactone) and its blends with poly(vinyl methyl ether) were prepared on silicon substrate by spin coating from dilute solution with various composition ratios. The as-prepared film was melted above the equilibrium melt temperature and subsequently crystallized over wide temperature ranges. For the neat poly(ε-caprolactone) and its blends, the as-prepared films show band morphology with concentric extinction rings. For ultrathin films, the morphology is changed to a different shape depending on the crystallization conditions. The neat poly(ε-caprolactone) crystals show the truncated lozenge-shaped morphology with clear striation lines. For the blends, the truncated lozenge-shaped morphology modified by bending to regular and/or inverted S- or C-shaped crystals with temperature, and the poly(vinyl methyl ether) composition in the blend. For a certain composition ratio of blend, with lowering the crystallization temperature, the bending of the crystals increases significantly. The band to bend morphology of the poly(ε-caprolactone) crystals is found strong dependence on the crystallization temperature, composition ratio of the blends, and the thickness of the film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. G. Reiter, I. Botiz, L. Graveleau, N. Grozev, K. Albrecht, A. Mourran, and M. Möller, “Morphologies of Polymer Crystals in Thin Films,” in Progress in Understanding of Polymer Crystallization, Ed. by G. Reiter and G. R. Strobl (Springer Berlin Heidelberg, Berlin, Heidelberg, 2007), pp. 179‒200.

  2. Z. Bartczak, A. S. Argon, R. E. Cohen, and T. Kowalewski, Polymer 40, 2367 (1999).

    Article  CAS  Google Scholar 

  3. H. Schönherr, Imaging Polymer Morphology using Atomic Force Microscopy, Polymer Morphology (John Wiley and Sons, Inc., New York, 2016), pp. 100‒117.

    Google Scholar 

  4. Y. Wang, C.-M. Chan, Y. Jiang, L. Li, and K.-M. Ng, Macromolecules 40, 4002 (2007).

    Article  CAS  Google Scholar 

  5. T. Ougizawa and T. Inoue, “Morphology of Polymer Blends,” in Polymer Blends Handbook, Ed. by L. A. Utracki and C. A. Wilkie (Springer Netherlands, Dordrecht, 2014), pp. 875‒918.

    Google Scholar 

  6. M. Safandowska and A. Rozanski, Polym. Test. 100, 107230 (2021).

  7. E. Woo, J. Adv. Chem. Eng. 5, (2015). https://doi.org/10.4172/2090-4568.1000120

  8. T. Ikehara and T. Kataoka, Sci. Rep. 3, 1444 (2013).

    Article  PubMed  Google Scholar 

  9. J. Liu, X. Yu, L. Xue, and Y. Han, “Morphology Control of Polymer thin Films,” in Polymer Morphology: Principles, Characterization, and Processing, Ed. by Q. Guo (John Wiley and Sons, Inc., New York, 2016), pp. 299‒316.

    Google Scholar 

  10. A. Mamun, Polym. Eng. Sci. 60, 2702 (2020).

    Article  CAS  Google Scholar 

  11. A. Mamun and R. Mahmood, Polym. Sci., Ser. A 62, 660 (2020).

    Article  Google Scholar 

  12. M. Campoy-Quiles, M. Sims, P. G. Etchegoin, and D. D. C. Bradley, Macromolecules 39, 7673 (2006).

    Article  CAS  Google Scholar 

  13. K. Taguchi, H. Miyaji, K. Izumi, A. Hoshino, Y. Miyamoto, and R. Kokawa, Polymer 42, 7443 (2001).

    Article  CAS  Google Scholar 

  14. V. H. Mareau, R. E. Prud’homme, Macromolecules 38, 398 (2005).

    Article  CAS  Google Scholar 

  15. A. Mamun, V. H. Mareau, J. Chen, and R. E. Prud’homme, Polymer 55, 2179 (2014).

    Article  CAS  Google Scholar 

  16. A. Mamun, J. Polym. Sci. 58, 3283 (2020).

    Article  CAS  Google Scholar 

  17. A. Mamun, S. M. M. Rahman, S. Roland, and R. Mahmood, J. Polym. Environ. 26, 3511 (2018).

    Article  CAS  Google Scholar 

  18. H. Schönherr and C. W. Frank, Macromolecules 36, 1188 (2003).

    Article  Google Scholar 

  19. A. Mamun, Polym. Int. 70, 648 (2021).

    Article  CAS  Google Scholar 

  20. W. Kossack and F. Kremer, Colloid Polym. Sci. 297, 771 (2019).

    Article  CAS  Google Scholar 

  21. A. Keller, J. Polym. Sci. 39, 151 (1959).

  22. H. D. Keith and F. J. Padden, J. Polym. Sci. 39, 101 (1959).

    Article  CAS  Google Scholar 

  23. H. D. Keith and F. J. Padden, Polymer 25, 28 (1984).

    Article  CAS  Google Scholar 

  24. H. D. Keith, F. J. Padden, and T. P. Russell, Macromolecules 22, 666 (1989).

    Article  CAS  Google Scholar 

  25. K. Wang, L. Cai, S. Jesse, and S. Wang, Langmuir 28, 4382 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. P. J. Barham, A. Keller, E. L. Otun, and P. A. Holmes, J. Mater. Sci. 19, 2781 (1984).

    Article  CAS  Google Scholar 

  27. J. Xu, B. Guo, J.-J. Zhou, L. Li, J. Wu, and M. Kowalczuk, Polymer 46, 9176 (2005).

    Article  CAS  Google Scholar 

  28. R. S. Davé and B. L. Farmer, Polymer 29, 1544 (1988).

    Article  Google Scholar 

  29. D. C. Bassett, A. M. Hodge, and A. Keller, Proc. R. Soc. London, Ser. A 377, 25 (1981).

    Article  CAS  Google Scholar 

  30. X. Zhou and G. E. Thompson, “Electron and Photon Based Spatially Resolved Techniques,” in Reference Module in Materials Science and Materials Engineering (Elsevier, Amsterdam, 2017).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The author would like to thank Professor Robert E. Prudhomme, UdeM for his assistance with constructive discussions and manuscript preparation. Additionally, the author wishes to express his gratitude to the Deanship of Scientific Research at UHB, Saudi Arabia for their gracious permission to use their experimental facilities. In addition, the author would like to thank the Department of Dentistry, UdeM, for granting access to the TEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Al Mamun.

Ethics declarations

The author declares that he has no conflicts of interest.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al Mamun Morphological Variation of the Poly(ε-caprolactone) Crystals in Bulk, Thin and Ultrathin Films of Poly(ε-caprolactone)/Poly(vinyl methyl ether) Blends. Polym. Sci. Ser. A 64, 297–307 (2022). https://doi.org/10.1134/S0965545X22700110

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X22700110

Navigation