Skip to main content
Log in

Development of Paraffin-Based Shape-Stable Phase Change Material for Thermal Energy Storage

  • POLYMER BLENDS
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

In the present work, a shape-stable phase change material has been prepared by blending the polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene triblock copolymer and paraffin. Different mass fractions of block copolymer have been used to produce composites material. The structural, chemical and morphological analyses of composites have been done. Differential scanning calorimetry and thermogravimetric analysis results indicated that the addition of supporting material (block copolymer) improves the thermal stability without much affecting the phase transition temperature of paraffin. The paraffin leakage in composites is analyzed by mass loss over thermal cycles in an oven at 80°C and the best performance has been achieved for 20 wt% of block copolymer into the composite. The thermal reliability of this sample has been investigated after 100 thermal cycles. Overall inspection of results suggested that the prepared composite is the most appropriate shape-stable phase change material for thermal energy storage applications because of their acceptable energy storage capacity, good thermal stability and reliability, physical and chemical compatibility, low cost and easy synthesis process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. W. Su, J. Darkwa, and G. Kokogiannakis, Renewable Sustainable Energy Rev. 48, 373 (2015).

    Article  CAS  Google Scholar 

  2. K. Pielichowska and K. Pielichowski, Prog. Mater. Sci. 65, 67 (2014).

    Article  CAS  Google Scholar 

  3. Y. Tang, D. Su, X. Huang, G. Alva, L. Liu, and G. Fang, Appl. Energy 180, 116 (2016).

    Article  CAS  Google Scholar 

  4. R. Rickert, R. Klein, and F. Schönberger, Materials 13, 3285 (2020).

    Article  CAS  Google Scholar 

  5. M. Akgün, O. Aydın, and K. Kaygusuz, Energy Convers. Manage. 48, 669 (2007).

    Article  Google Scholar 

  6. Y. Shi, M. Hu, Y. Xing, and Y. Li, Mater. Des. 185, 108219 (2020).

  7. Y. Qu, S. Wang, D. Zhou, and Y. Tian, Renewable Energy 146, 2637 (2020).

    Article  CAS  Google Scholar 

  8. V. Chalkia, N. Tachos, P. K. Pandis, A. Giannakas, M. K. Koukou, M. G. Vrachopoulos, and V. N. Stathopoulos, RSC Adv. 8, 27438 (2018).

    Article  CAS  Google Scholar 

  9. D. Wu, B. Ni, Y. Liu, S. Chen, and H. Zhang, J. Mater. Chem. A 3, 9645 (2015).

    Article  CAS  Google Scholar 

  10. S. Kim, H. Moon, and J. Kim, Thermochim. Acta 613, 9 (2015).

    Article  CAS  Google Scholar 

  11. M. Mu, P. A. M. Basheer, W. Sha, Y. Bai, and T. McNally, Appl. Energy 162, 68 (2016).

    Article  CAS  Google Scholar 

  12. R. Al-Shannaq, M. Farid, S. Al-Muhtaseb, and J. Kurdi, Sol. Energy Mater. Sol. Cells 132, 311 (2015).

    Article  CAS  Google Scholar 

  13. Q. Huang, X. Li, G. Zhang, J. Deng, and C. Wang, Appl. Therm. Eng. 183, 116151 (2021).

  14. S. M. Lai, and X. F. Wang, J. Appl. Polym. Sci. 134, 45475 (2017).

    Article  Google Scholar 

  15. S. Song, J. Feng, and P. Wu, Macromol. Rapid Commun. 32, 1569 (2011).

    Article  CAS  Google Scholar 

  16. M. Pantoja, P. Z. Jian, M. Cakmak, and K. A. Cavicchi, ACS Appl. Polym. Mater. 1, 414 (2019).

    Article  CAS  Google Scholar 

  17. A. Sarı, C. Alkan, and C. Bilgin, Appl. Energy, 136, 217 (2014).

    Article  Google Scholar 

  18. C. Alkan, K. Kaya, and A. Sarı, J. Polym. Environ. 17, 254 (2009).

    Article  CAS  Google Scholar 

  19. Z. Liu, X. Lan, W. Bian, L. Liu, Q. Li, Y. Liu, and J. Leng, Composites, Part B 193, 108056 (2020).

  20. H. Hu, Composites, Part B 195, 108094 (2020).

  21. Q. Zhang, Y. Zhao, J. Feng, Sol. Energy Mater. Sol. Cells 118, 54 (2013).

    Article  CAS  Google Scholar 

  22. W. Wu, W. Wu, and S. Wang, Appl. Energy 236, 10 (2019).

    Article  CAS  Google Scholar 

  23. Q. Zhang, S. Song, J. Feng, and P. Wu, J. Mater. Chem. 22, 24776 (2012).

    Article  CAS  Google Scholar 

  24. A. Khan, P. Saikia, R. Saxena, D. Rakshit, and S. Saha, Int. J. Energy Res. 44, 1567 (2020).

    Article  CAS  Google Scholar 

  25. P. Chen, X. Gao, Y. Wang, T. Xu, Y. Fang, and Z. Zhang, Sol. Energy Mater. Sol. Cells, 149, 60 (2016).

    Article  CAS  Google Scholar 

  26. S. Tang, Y. Xu, G. Su, J. Bao, and A. Zhang, RSC Adv. 8, 35429 (2018).

    Article  CAS  Google Scholar 

  27. B. Xiang, Z. Yang, and J. Zhang, Polym. Adv. Technol. 32, 420 (2021).

    Article  CAS  Google Scholar 

  28. I. Chriaa, A. Trigui, M. Karkri, I. Jedidi, M. Abdelmouleh, and C. Boudaya, Appl. Therm. Eng. 171, 115072 (2020).

  29. Z. Zhang, N. Zhang, J. Peng, X. Fang, X. Gao, and Y. Fang, Appl. Energy 91, 426 (2012).

    Article  CAS  Google Scholar 

  30. T. Wu, Y. Hu, H. Rong, and C. Wang, Energy 221, 119900 (2021).

  31. S. Peng, A. Fuchs, and R. A. Wirtz, J. Appl. Polym. Sci. 93, 1240 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaspreet Singh Aulakh.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaspreet Singh Aulakh, Deepika P. Joshi Development of Paraffin-Based Shape-Stable Phase Change Material for Thermal Energy Storage. Polym. Sci. Ser. A 64, 308–317 (2022). https://doi.org/10.1134/S0965545X22200056

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X22200056

Navigation