Skip to main content
Log in

Vanadium-Containing Heteropoly Acids of Keggin Structure as Precursors of CoPMoV Sulfide Catalysts for Hydroconversion of Dibenzothiophene and Naphthalene

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

Mixed PMoV heteropoly acids of Keggin structure, H3+xPVxMo12–xO40 (x = 1–3), were synthesized. Alumina-supported sulfide catalysts were prepared by the support impregnation with a solution of mixed heteropoly acids and Co citrate, followed by activation in an H2S stream. The physicochemical characteristics of the catalyst samples were determined, and their catalytic properties in dibenzothiophene hydrodesulfurization and naphthalene hydrogenation were studied. The catalytic system containing CoPVMo11 showed higher hydrogenating and hydrodesulfurizing activity at 300–320°С.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Notes

  1. The International Centre for Diffraction Data PDF-2.

REFERENCES

  1. Misono, M., Studies in Surface Science and Catalysis, Elsevier, 2013, vol. 176, pp. 97–155. https://doi.org/10.1016/B978-0-444-53833-8.00004-1

  2. North, J., Poole, O., Alotaibi, A., Bayahia, H., Kozhevnikova, E.F., Alsalme, A., Siddiqui, M.R.H., and Kozhevnikov, I.V., Appl. Catal. A: General, 2015, vol. 508, pp. 16–24. https://doi.org/10.1016/j.apcata.2015.10.001

    Article  CAS  Google Scholar 

  3. Sun, M., Adjaye, J., and Nelson, A.E., Appl. Catal. A: General, 2004, vol. 263, no. 2, pp. 131–143. https://doi.org/10.1016/j.apcata.2003.12.011

    Article  CAS  Google Scholar 

  4. Tanimu, A. and Alhooshani, K., Energy Fuels, 2019, vol. 33, no. 4, pp. 2810–2838. https://doi.org/10.1021/acs.energyfuels.9b00354

    Article  CAS  Google Scholar 

  5. Huirache-Acuña, R., Nava, R., Peza-Ledesma, C.L., Lara-Romero, J., Alonso-Núñez, G., Pawelec, B., and Rivera-Muñoz, E.M., Materials, 2013, vol. 6, no. 9, pp. 4139–4167. https://doi.org/10.3390/ma6094139

    Article  CAS  Google Scholar 

  6. Guo, J., Chu, L., Yang, H., Huang, Z., Yang, M., and Wang, G., Chem. Eng. J., 2023, vol. 451, pp. 1–11. https://doi.org/10.1016/j.cej.2022.138595

    Article  CAS  Google Scholar 

  7. Lizama, L. and Klimova, T., Appl. Catal. B: Environmental, 2008, vol. 82, nos. 3–4, pp. 139–150. https://doi.org/10.1016/j.apcatb.2008.01.018

    Article  CAS  Google Scholar 

  8. Song, W., Lai, W., Lian, Y., Jiang, X., and Yang, W., Fuel, 2020, vol. 263, pp. 1–10. https://doi.org/10.1016/j.fuel.2019.116705

    Article  CAS  Google Scholar 

  9. Jongerius, A.L., Jastrzebski, R., Bruijnincx, P.C.A., and Weckhuysen, B.M., J. Catal., 2012, vol. 285, no. 1, pp. 315–323. https://doi.org/10.1016/j.jcat.2011.10.006

    Article  CAS  Google Scholar 

  10. Betancourt, P., Marrero, S., and Pinto-Castilla, S., Fuel Process. Technol., 2013, vol. 114, pp. 21–25. https://doi.org/10.1016/j.fuproc.2013.03.013

    Article  CAS  Google Scholar 

  11. Petersen, A.R., Nielsen, L.B., Dethlefsen, J.R., and Fristrup, P., ChemCatChem., 2018, vol. 10, no. 4, pp. 769–778. https://doi.org/10.1002/cctc.201701049

    Article  CAS  Google Scholar 

  12. Odyakov, V.F., Zhizhina, E.G., Rodikova, Y.A., and Gogin, L.L., Eur. J. Inorg. Chem., 2015, vol. 2015, no. 22, pp. 3618–3631. https://doi.org/10.1002/ejic.201500359

    Article  CAS  Google Scholar 

  13. Startsev, A.N. and Zakharov, I.I., Russ. Сhem. Rev., 2003, vol. 72, no. 6, pp. 517–536. https://doi.org/10.1070/RC2003v072n06ABEH000772

    Article  CAS  Google Scholar 

  14. Wang, B., Yu, W., Meng, D., Li, Z., Xu, Y., and Ma, X., Reac. Kinet., Mech. Catal., 2018, vol. 125, pp. 111–126. https://doi.org/10.1007/s11144-018-1396-y

    Article  CAS  Google Scholar 

  15. Lee, J.J., Kim, H., and Moon, S.H., Appl. Catal. B: Environmental, 2003, vol. 41, nos. 1–2, pp. 171–180. https://doi.org/10.1016/S0926-3373(02)00209-6

    Article  CAS  Google Scholar 

Download references

Funding

The study was financially supported by the Russian Science Foundation, project no. 19-79-10016, https://rscf.ru/project/19-79-10016/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Timoshkina.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Timoshkina, V.V., Vinogradov, N.A., Pimerzin, A.A. et al. Vanadium-Containing Heteropoly Acids of Keggin Structure as Precursors of CoPMoV Sulfide Catalysts for Hydroconversion of Dibenzothiophene and Naphthalene. Pet. Chem. 62, 1343–1349 (2022). https://doi.org/10.1134/S0965544122110044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544122110044

Keywords:

Navigation