Skip to main content
Log in

Effect of Rock on Aquathermolysis Reactions at Laboratory Scale (A Review)

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

Enhanced recovery methods are an important stage in the oilfield development and exploitation program. They allow generating an increase in production related to the decrease of the remaining oil in the reservoir, which was not possible to remove in previous production schemes. Among them, steam injection is one of the methods used, whose main objective is to reduce the viscosity of the crude oil. In the literature there are researches where is evident an interaction between the steam and the crude oil in the reservoir, giving way to the occurrence of chemical reactions called Aquathermolysis. This transformation is a chemical result that occurs at temperatures between 200 to 325°C typical for steam injection. However, the investigations have been focused more on the fluid-fluid interaction than the rock-fluid synergy. The present work aims to better understand the synergy generated in the fluid-rock interaction through a systematic review of the research found in the literature associated with the use of rock fragments, minerals, or porous media in steam injection conditions. For analyzing the data, a descriptive bibliometric study was made with the selected studies where a rock sample was used. As a result, the addition of the mineral and rocks over the reactions generates a catalytic effect observed in the physical and chemical crude oil properties changes. This additional effect is generated for the presence of some minerals in the rock sample and this behavior could change according to its composition. Also, the gas production and its variation under different operational parameters are evidence of rock presence benefits over the process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

Similar content being viewed by others

REFERENCES

  1. Guo, K., Li, H., and Yu, Z., Fuel, 2016, vol. 185, pp. 886–902. https://doi.org/10.1016/j.fuel.2016.08.047

    Article  CAS  Google Scholar 

  2. Li, Y., Wang, Z., Hu, Z., Xu, B., Li, Y., Pu, W., and Zhao, J., Petroleum, 2020, vol. 7, pp. 117–122. https://doi.org/10.1016/j.petlm.2020.09.004

    Article  CAS  Google Scholar 

  3. Dong, X., Liu, H., Chen, Z., Wu, K., Lu, N., and Zhang, Q., Appl. Energy, 2019, vol. 239, pp. 1190–1211. https://doi.org/10.1016/j.apenergy.2019.01.244

    Article  CAS  Google Scholar 

  4. Babadagli, T., J. Petrol. Sci. Eng., 2020, vol. 188, p. 106930. https://doi.org/10.1016/j.petrol.2020.106930

    Article  CAS  Google Scholar 

  5. Peñuela-Muñoz, J.H., Revista Virtual Pro, 2017, vol. 184, pp. 1–3. https://www.revistavirtualpro.com/editoriales/20170501-ed.pdf

    Google Scholar 

  6. León Naranjo, P.A., Bernal Correa, D.L., Muñoz Navarro, S.F., and Ordoñez Rodríguez, A., I Revista Fuentes: El Reventón Energético, 2015, vol. 12, pp. 21–31. https://doi.org/10.18273/revfue.v13n1-2015002

    Article  CAS  Google Scholar 

  7. Naranjo Suárez, C., Muñoz Navarro, S.F., and Zapata Arango, J., Revista Fuentes: El Reventón Energético, 2010, vol. 8, p. 11. https://revistas.uis.edu.co/index.php/revistafuentes/article/view/1147

    Google Scholar 

  8. Zhao, D.W. and Gates, I.D., Fuel, 2015, vol. 153, pp. 559–568. https://doi.org/10.1016/j.fuel.2015.03.024

    Article  CAS  Google Scholar 

  9. Zhong, L.G., Liu, Y.J., Fan, H.F., and Jiang, S.J., SPE Int. Improved Oil Recovery Conf. in Asia Pacific, Kuala Lumpur, Malaysia, 2003. p. 6. https://doi.org/10.2118/84863-MS

  10. Hyne, J.B., Clark, P.D., Clarke, R.A., Koo, J., and Greidanus, J.W., INTEVEP, 1982, vol. 2, pp. 87–94. https://www.osti.gov/etdeweb/biblio/5969666

    CAS  Google Scholar 

  11. Kapadia, P.R., Kallos, M.S., and Gates, I.D., Fuel Process. Technol., 2015, vol. 131, pp. 270–289. https://doi.org/10.1016/j.fuproc.2014.11.027

    Article  CAS  Google Scholar 

  12. Hamedi-Shokrlu, Y. and Babadagli, T., SPE Res. Eval. & Eng., 2014, vol. 17, pp. 355–364. https://doi.org/10.2118/170250-PA

    Article  Google Scholar 

  13. Wang, Y., Chen, Y., He, J., Li, P., and Yang, C., Energy Fuels, 2010, vol. 24, pp. 1502–1510. https://doi.org/10.1021/ef901339k

  14. Xu, Y., Ayala-Orozco, C., and Wong, M.S., SPE Western Regional Meeting, Garden Grove, California, USA, 2018, April 22–26, 2018. https://doi.org/10.2118/190020-MS

  15. Chávez Morales, S.M., Experimental and Numerical Simulation of Combined Enhanced Oil Recovery with In Situ, University of Calgary, 2016.

  16. Nuñez-Méndez, K.S., Salas-Chia, L.M., Molina, D.V., Muñoz Navarro, S.F., León Naranjo, P.A., and León Bermúdez, A.Y., Energy Fuels, 2021, vol. 35, no. 6, pp. 5231–5240, https://doi.org/10.1021/acs.energyfuels.0c04142

    Article  CAS  Google Scholar 

  17. Cochrane Handbook for Systematic Reviews of Interventions. Higgins, J.P.T., Thomas, J., Chandler, J., Cumpston, M., Li, T., Page, M.J., and Welch, V.A., Eds., 2nd ed.m Chichester (UK): John Wiley & Sons, 2019.

  18. Rivas, O.R., Campos, R.E., and Borges, L.G., SPE Annual Technical Conf. and Exhibition, Houston, 1988, October 2–5, p. 9. https://doi.org/10.2118/18076-MS

  19. Brons, G. and Siskin, M., Fuel, 1994, vol. 73, pp. 183–191. https://doi.org/10.1016/0016-2361(94)90112-0

    Article  CAS  Google Scholar 

  20. Belgrave, J.D.M., Moore, R.G., and Ursenbach, M.G., Can. J. Chem. Eng., 1994, vol. 72, pp. 511–516. https://doi.org/10.1002/cjce.5450720317

    Article  CAS  Google Scholar 

  21. Karacan, C.Ö. and Okandan, E., Pet. Sci. Technol., 1997, vol. 15, p. 429–443. https://doi.org/10.1080/10916469708949668

    Article  CAS  Google Scholar 

  22. Xu, H.H., Okazawa, N., Moore, R.G., Mehta, S.A., Laureshen, C.J., Ursenbach, M.G., and Mallory, D., in Petroleum Society’s Canadian Int. Petroleum Conf., Calgary, 2000, pp. 1–12. https://doi.org/10.2118/2000-030

  23. Xu, H.H., Okazawa, N., Moore, R.G., Mehta, S.A., Laureshen, C.J., Ursenbach, M.G., and Mallory, D., J. Can. Pet. Technol., 2001, vol. 40, pp. 45–53. https://doi.org/10.2118/01-08-04

    Article  CAS  Google Scholar 

  24. Ovalles, C., Vallejos, C., Vásquez, T., Martinis, J., Perez-Perez, A., Cotte, E., Castellanos, L., and Rodriguez, H., Int. Thermal Operations and Heavy Oil Symp., Porlamar, Venezuela, 2001. pp. 1–6. https://doi.org/10.2118/69692-MS

  25. Fan, H.-F., Liu, Y.-J., and Zhong, L.-G., Energy Fuels, 2001, vol. 15, pp. 1475–1479. https://doi.org/10.1021/ef0100911

    Article  CAS  Google Scholar 

  26. Fan, H., J. Can. Pet.Technol., 2003, vol. 42, pp. 11–14. https://doi.org/10.2118/03-03-TN1

    Article  CAS  Google Scholar 

  27. Fan, H., Zhang, Y., and Lin, Y., Fuel, 2004, vol. 83, pp. 2035–2039. https://doi.org/10.1016/j.fuel.2004.04.010

    Article  CAS  Google Scholar 

  28. Lamoureux-Var, V. and Lorant, F., SPE/PS-CIM/CHOA Int. Thermal Operations and Heavy Oil Symp., Calgary, Canada, 2005, pp. 1–4. https://doi.org/10.2118/97810-MS

  29. Ovalles, C. and Rodríguez, H., J. Can. Pet. Technol., 2008, vol. 47, pp. 43–51. https://doi.org/10.2118/08-01-43

    Article  CAS  Google Scholar 

  30. Mohammad, A.A. and Mamora, D.D., SPE/PS/CHOA Int. Thermal Operations and Heavy Oil Symp., Calgary, Canada, 2008, pp. 1–11. https://doi.org/10.2118/117604-MS

  31. Mohammad, A.A., Experimental Investigation of In Situ Upgrading of Heavy Oil by Using a Hydrogen Donor and Catalyst During Steam Injection, Texas A&M University, 2008.

  32. Zhang, X., Liu, Y., Fan, Y., and Che, H., China Petroleum Processing and Petrochemical Technology, 2010, vol. 12, pp. 25–31. http://www.chinarefining.com/EN/abstract/abstract31.shtml

    CAS  Google Scholar 

  33. Hashemi, R. and Pereira, P., SPE Canada Unconventional Resources Conf., Calgary, Canada, 2011, pp. 1–13. https://doi.org/10.2118/149257-MS

  34. Chen, Q.Y., Liu, Y.J., and Zhao, J., Adv. Mat. Res., 2011, vols. 236–238, pp. 839–843. https://doi.org/10.4028/www.scientific.net/AMR.236-238.839

    Article  CAS  Google Scholar 

  35. Xu, H. and Pu, C., J. Fuel Chem. Technol., 2011, vol. 39, pp. 606–610. https://doi.org/10.1016/S1872-5813(11)60037-6

    Article  Google Scholar 

  36. Hashemi, R., In-Situ Upgrading and Recovery Enhancement of Athabasca Bitumen by Ultra-Dispersed Nanocatalysts, University of Calgary, 2013.

  37. Dong, L., Cai, Y.C., Liu, Y.J., Xu, K.M., Chen, D.X., Kong, X.W., and Zhao, F., Adv. Mat. Res., 2013, vol. 772, pp. 297–302. https://doi.org/10.4028/www.scientific.net/AMR.772.297

    Article  CAS  Google Scholar 

  38. Montgomery, W., Court, R.W., Rees, A.C., and Sephton, M.A., Fuel, 2013, vol. 113, pp. 426–434. https://doi.org/10.1016/j.fuel.2013.05.098

    Article  CAS  Google Scholar 

  39. Montgomery, W., Sephton, M.A., Court, R.W., Watson, J.S., Zeng, H., and Rees, A., SPE Heavy Oil Conf., Calgary, Canada, 2013. pp. 1–12. http://www.onepetro.org/doi/10.2118/165404-MS

  40. Qin, W. and Xiao, Z., Adv. Mat. Res., 2013, vols. 608–609, pp. 1428–1432. https://doi.org/10.4028/www.scientific.net/AMR.608-609.1428

    Article  CAS  Google Scholar 

  41. Hamedi Shokrlu, Y. and Babadagli, T., SPE Res. Eval. & Eng., 2013, vol. 16, pp. 333–344. http://www.onepetro.org/doi/10.2118/146661-PA

    Article  Google Scholar 

  42. Osgouei, Y.T., Thesis submitted to the Graduate School of Natural and Applied Sciences of Middle East Technology, Middle East Technical University, 2013.

  43. Montgomery, W., Sephton, M.A., Watson, J.S., and Zeng, H., SPE Heavy Oil Conf., Calgary, Canada, 2014, pp. 1–7. https://doi.org/10.2118/170035-MS

  44. Hamedi Shokrlu, Y. and Babadagli, T., J. Pet. Sci. Eng., 2014, vol. 119, pp. 210–220. https://doi.org/10.1016/j.petrol.2014.05.012

    Article  CAS  Google Scholar 

  45. Petrukhina, N.N., Kayukova, G.P., Romanov, G.V., Tumanyan, B.P., Foss, L.E., Kosachev, I.P., Musin, R.Z., Ramazanova, A.I., and Vakhin, A.V., Chem. Tech. Fuels Oil+, 2014, vol. 50, pp. 315–326. https://doi.org/10.1007/s10553-014-0528-y

  46. Afzal, S., Nikookar, M., Ehsani, M.R., and Roayaei, E., Iranian J. Oil & Gas Sci. Technol., 2014, vol. 3, pp. 27–36. https://doi.org/10.22050/IJOGST.2014.6033

    Article  Google Scholar 

  47. Farooqui, J., Babadagli, T., and Li, H.A., SPE Canada Heavy Oil Technical Conf., Calgary, Canada, 2015, pp. 1–17. https://doi.org/10.2118/174478-MS

  48. Butron, J., Bryan, J., Yu, X., and Kantzas, A., SPE Heavy Oil Conf., Calgary, Canada, 2015, pp. 1–20. https://doi.org/10.2118/174464-MS

  49. Shuwa, S.M., Al-Hajri, R.S., Mohsenzadeh, A., Al-Waheibi, Y.M., and Jibril, B.Y., SPE EOR Conf. at Oil and Gas West Asia, Muscat, Oman 2016, pp. 1–17. https://doi.org/10.2118/179766-MS

  50. Lin, R., Song, D., Wang, X., and Yang, D., Energy Fuels, 2016, vol. 30, pp. 5323–5329. https://doi.org/10.1021/acs.energyfuels.5b02646

    Article  CAS  Google Scholar 

  51. Chavez-Morales, S. and Pereira-Almao, P., SPE Latin America and Caribbean Heavy and Extra Heavy Oil Conf., Lima, Peru, 2016. https://doi.org/10.2118/181207-MS

  52. Franco, C., Cardona, L., Lopera, S., Mejia, J., and Cortés, F., SPE Improved Oil Recovery Conf., Tulsa, Oklahoma, USA, 2016. https://doi.org/10.2118/179699-MS

  53. Cardona Rojas, L., Efecto de nanopartículas en procesos con inyección de vapor a diferentes calidades, Universidad Nacional de Colombia, 2017.

  54. Kayukova, G.P., Foss, L.E., Feoktistov, D.A., Vakhin, A.V., Petrukhina, N.N., and Romanov, G.V., Pet. Chem., 2017, vol. 57, pp. 657–665. https://doi.org/10.1134/S0965544117050061

    Article  CAS  Google Scholar 

  55. Montgomery, W., Watson, J.S., Lewis, J.M.T., Zeng, H., and Sephton, M.A., Energy Fuels, 2018, vol. 32, pp. 4651–4654. https://doi.org/10.1021/acs.energyfuels.7b03566

    Article  CAS  Google Scholar 

  56. Kayukova, G.P., Mikhailova, A.N., Kosachev, I.P., Feoktistov, D.A., Vakhin, A.V., and Arbuzov, A.E., Energy Fuels, 2018, vol. 32, pp. 6488–6497. https://doi.org/10.1021/acs.energyfuels.8b00347

    Article  CAS  Google Scholar 

  57. Foss, L., Petrukhina, N., Kayukova, G., Amerkhanov, M., Romanov, G., and Ganeeva, Y., J. Pet. Sci. Eng., 2018, vol. 169, pp. 269–276. https://doi.org/10.1016/j.petrol.2018.04.061

    Article  CAS  Google Scholar 

  58. Tavakkoli Osgouei, Y. and Parlaktuna, M., Energy Sources, Part A, 2018, vol. 40, pp. 662–672. https://doi.org/10.1080/15567036.2018.1454547

    Article  CAS  Google Scholar 

  59. Yi, S., Babadagli, T., and Li, H.A., SPE J., 2018, vol. 23, pp. 145–156. https://doi.org/10.2118/186102-pa

    Article  CAS  Google Scholar 

  60. Mukhamatdinov, I.I., Sitnov, S.A., Slavkina, O.V., Bugaev, K.A., Laikov, A.V., and Vakhin, A.V., Pet. Sci. Technol., 2019, vol. 37, pp. 1410–1416. https://doi.org/10.1080/10916466.2019.1587464

    Article  CAS  Google Scholar 

  61. Elahi, S.M., Khoshooei, M.A., Scott, C.E., Ortega, L.C., Chen, Z., and Pereira-Almao, P., Society of Petroleum EngineersSPE Europec Featured at 81st EAGE Conf. and Exhibition, 2019, London, England, UK, pp. 1–11. https://doi.org/10.2118/195474-MS

  62. Castro, Y., Sánchez, D., and Viloria, A., Revista Ingeniería UC, 2019, vol. 26, pp. 23–30. http://servicio.bc.uc.edu.ve/ingenieria/revista/v26n1/art03.pdf

    CAS  Google Scholar 

  63. Vakhin, A.V., Aliev, F.A., Mukhamatdinov, I.I., Sitnov, S.A., Sharifullin, A.V., Kudryashov, S.I., Afanasiev, I.S., Petrashov, O.V., and Nurgaliev, D.K., Processes, 2020, vol. 8, no. 5, p. 532. https://doi.org/10.3390/pr8050532

    Article  CAS  Google Scholar 

  64. Zhang, J., Han, F., Yang, Z., Zhang, L., Wang, X., Zhang, X., Jiang, Y., Chen, K., Pan, H., and Lin, R., Energy Fuels, 2020, vol. 34, pp. 5426–5435. https://doi.org/10.1021/acs.energyfuels.9b04004

    Article  CAS  Google Scholar 

  65. Sitnov, S., Mukhamatdinov, I., Aliev, F., Khelkhal, M.A., Slavkina, O., and Bugaev, K., Pet. Sci. Technol., 2020, vol. 38, pp. 574–579. https://doi.org/10.1080/10916466.2020.1773498

    Article  CAS  Google Scholar 

  66. Nasyrova, Z., Aliev, A., Affane, B., Popkov, A., Proshchekalnikov, D., and Bashkirtseva, N., IOP Conf. Ser.: Earth Environ. Sci., 2020, vol. 516, p. 012031. https://doi.org/10.1088/1755-1315/516/1/012031

    Article  Google Scholar 

  67. Ivanova, I., Kutlizamaev, R., Safin, B., Grishko, A., Sitnov, S., Slavkina, O., and Shchekoldin, K., IOP Conf. Ser.: Earth Environ. Sci., 2020, vol. 516, p. 01237. https://doi.org/10.1088/1755-1315/516/1/012037

    Article  Google Scholar 

  68. Petrov, S., Lahova, A., Sitnov, S., Slavkina, O., and Shchekoldin, K., IOP Conf. Ser.: Earth Environ. Sci., 2020, vol. 516, p. 012035. https://doi.org/10.1088/1755-1315/516/1/012035

    Article  Google Scholar 

  69. Petrov, S.M., Safiulina, A.G., Bashkirtseva, N.Y., Lakhova, A.I., and Islamova, G.G., Processes, 2021, vol. 9, no. 2. https://doi.org/10.3390/pr9020256

  70. Kayukova, G.P., Mikhailova, A.N., Kosachev, I.P., Nasyrova, Z.R., Gareev, B.I., and Vakhin, A.V., Energy Fuels, 2021, vol. 35, pp. 1297–1307. https://doi.org/10.1021/acs.energyfuels.0c03546

    Article  CAS  Google Scholar 

  71. Qu, X., Li, Y., Li, S., Wang, J., Xu, H., and Li, Z., J. Pet. Sci. Eng., 2021, vol. 201, p. 108473. https://doi.org/10.1016/j.petrol.2021.108473

    Article  CAS  Google Scholar 

  72. Ahmadi Khoshooei, M., Elahi, S.M., Carbognani, L., Scott, C.E., and Pereira-Almao, P., Fuel, 2021, vol. 288, p. 119664. https://doi.org/10.1016/j.fuel.2020.119664

    Article  CAS  Google Scholar 

  73. Suhag, A., Ranjith, R., Balaji, K., Peksaglam, Z., Malik, V., Zhang, M., Biopharm, F., Putra, D., Energy, R,, Wijaya, Z., Dhannoon, D., Temizel, C., and Aminzadeh, F., SPE Western Regional Meeting, 2017, Bakersfield, California, pp. 1–35. https://doi.org/10.2118/185653-MS

  74. Zhao, P., Li, C., Wang, C., and Yang, M., Pet. Sci. Technol., 2016, vol. 34, pp. 1452–1461. https://doi.org/10.1080/10916466.2016.1204314

    Article  CAS  Google Scholar 

  75. Ren, R., Liu, H., Chen, Y., Li, J., and Chen, Y., Energy Fuels, 2015, vol. 29, pp. 7793–7799. https://doi.org/10.1021/acs.energyfuels.5b01256

    Article  CAS  Google Scholar 

  76. Fingas, M.,in Oil Spill Science and Technology, Fingas, M., Ed., 2010, ch. 3, pp. 51–59.

Download references

ACKNOWLEDGMENTS

The authors are grateful for the support provided by the Universidad Industrial de Santander and the staff of the seed capital project number 2681. They also thank the Ministry of Science, Technology and Innovation of Colombia (MINCIENCIAS) for the support provided.

Funding

MINCIENCIAS under the Proposals No. 891 of 2020 – Vocations and Training in CTeI for Economic Reactivation in the framework of the Post pandemic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Miguel Salas-Chia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salas-Chia, L.M., Naranjo, P.A.L. & Bermúdez, A.Y.L. Effect of Rock on Aquathermolysis Reactions at Laboratory Scale (A Review). Pet. Chem. 63, 241–256 (2023). https://doi.org/10.1134/S0965544122100164

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544122100164

Keywords:

Navigation