Skip to main content
Log in

Preparation and ionic selectivity of carbon-coated alumina nanofiber membranes

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

A novel type of ion-selective membranes based on NafenTM alumina nanofibers coated with carbon is proposed. The membranes are produced by filtration of a Nafen nanofiber suspension through a porous support followed by drying and sintering. A thin carbon layer (up to 2 nm) is deposited on the nanofibers by chemical vapor deposition (CVD). Its formation is confirmed by the results of Raman spectroscopy and visually observed in TEM images. According to low temperature nitrogen adsorption experiments, the formation of carbon layer leads to decreasing pore size (the maximum of pore size distribution shifts from 28 to 16 nm) and the corresponding decrease of porosity (from 75 to 62%) and specific surface area (from 146 to 107 m2g–1). The measurement of membrane potential in an electrochemical cell has shown that the deposition of carbon on the membrane results in high ionic selectivity. In an aqueous KCl solution, the membranes display high anion selectivity with anion and cation transference numbers of 0.94 and 0.06, respectively. The fixed-charge density of membrane has been determined by fitting the experimental data using the Teorell–Meyer–Sievers model. It has been found that the membrane fixed-charge density increases with increasing electrolyte concentration. Possible applications of the membranes produced include nanofiltration, ultrafiltration, and separation of charged species in mixtures. The formation of a conductive carbon layer on the pore surface can be employed for fabricating membranes with switchable ion-transport selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Strathmann, Introduction to Membrane Science (Wiley–VCH, Weinheim, 2011).

    Google Scholar 

  2. R. W. Baker, Membrane Technology and Applications (Wiley, Chichester, 2004).

    Book  Google Scholar 

  3. K. Li, Ceramic Membranes for Separation and Reaction (Wiley, Chichester, 2007).

    Book  Google Scholar 

  4. Yu. L. Komolikov and L. A. Blaginina, Refract. Indust. Ceramics. 43, 181 (2002).

    Article  CAS  Google Scholar 

  5. I. P. Garmash, Yu. N. Kryuchkov, and V. N. Pavlikov, Glass and Ceramics, 52, 150 (1995).

    Article  Google Scholar 

  6. S. Benfer, P. Arki, and G. Tomandl, Adv Eng. Mater. 6, 495 (2004).

    Article  CAS  Google Scholar 

  7. V. V. Volkov, B. V. Mchedlishvili, V. I. Roldugin, et al., Nanotechnol. Russ. 3, 656 (2008).

    Article  Google Scholar 

  8. M. C. Almandoz, C. L. Pagliero, N. A. Ochoa, and J. Marchese, Ceram. Int. 41, 5621 (2015).

    Article  CAS  Google Scholar 

  9. J. Schaep, C. Vandecasteele, B. Peeters, et al., J. Membr. Sci. 163, 229 (1999).

    Article  CAS  Google Scholar 

  10. T. Fujioka, S. J. Khan, J. A. McDonald, and L. D. Nghiem, Sep. Purif. Technol. 136, 258 (2014).

    Article  CAS  Google Scholar 

  11. A. Julbe, D. Farrusseng, and C. Guizard, J. Membr. Sci. 163, 229 (1999).

    Article  Google Scholar 

  12. G. Q. Lu, J. C. Diniz da Costa, M. Duke, et al., J. Colloid Interface Sci. 314, 589 (2007).

    Article  CAS  Google Scholar 

  13. R. S. Barhate, S. Sundarrajan, D. Plizska, and S. Ramakrishna, Filtr. Sep. 45, 32 (2008).

    Article  CAS  Google Scholar 

  14. X. B. Ke, H. Y. Zhu, X. P. Gao, et al., Adv. Mater. 19, 785 (2007).

    Article  CAS  Google Scholar 

  15. S. Ramkrishna, R. Jose, P. S. Archana, et al., J. Mater. Sci. 45, 6283 (2010).

    Article  Google Scholar 

  16. Features of Nafen alumina nanofibers. http://www.anftechnology.com/nafen/.

  17. Z. Saunders, C. W. Noack, D. A. Dzombak, and G. V. Lowry, J. Nanopart. Res, 17, 140 (2015).

    Article  Google Scholar 

  18. V. Su, M. Terehov, and B. Clyne, Adv. Eng. Mater. 14, 1088 (2012).

    Article  CAS  Google Scholar 

  19. V. M. T. Su and T. W. Clyne, Adv. Eng. Mater. 18, 96 (2016).

    Article  CAS  Google Scholar 

  20. I. Hussainova, R. Ivanov, S. M. Stamatin, et al., Carbon 88, 157 (2015).

    Article  CAS  Google Scholar 

  21. R. Ivanov, I. Hussainova, M. Aghayan, et al., J. Eur. Ceram. Soc. 35, 4017 (2015).

    Article  CAS  Google Scholar 

  22. M. Drozdova, I. Hussainova, D. Pérez-Coll, et al., Mater. Des. 90, 291 (2016).

    Article  CAS  Google Scholar 

  23. M. Nishizawa, V. P. Menon, and C. R. Martin, Science 268, 700 (1995).

    Article  CAS  Google Scholar 

  24. M. S. Kang and C. R. Martin, Langmuir 17, 2753 (2001).

    Article  CAS  Google Scholar 

  25. A. B. Yaroslavtsev, V. V. Nikonenko, and V. I. Zabolotskii, Russ. Chem. Rev. 72, 393 (2003).

    Article  CAS  Google Scholar 

  26. A. B. Yaroslavtsev and V. V. Nikonenko, Nanotechnol. Russ. 4, 137 (2009).

    Article  Google Scholar 

  27. G. Pourcelly, V. V. Nikonenko, N. D. Pismenskaya, and A. B. Yaroslavtsev, Ionic Interactions in Natural and Synthetic Macromolecules, Ed. by A. Ciferri and A. Perico (Wiley, Hoboken, 2012), p. 761.

  28. J. Pang, A. Bachmatiuk, I. Ibrahim, et al., J. Mater. Sci. 51, 640 (2016).

    Article  CAS  Google Scholar 

  29. J. Park, J. Lee, J. H. Choi, et al., Sci. Rep. 5, 11839 (2015).

    Article  Google Scholar 

  30. V. I. Zabolotskii and V. V. Nikonenko, Ion Transport in Membranes (Nauka, Moscow, 1996) [in Russian].

    Google Scholar 

  31. Y. Tanaka, Ion Exchange Membranes: Fundamentals and Applications (Elsevier, Amsterdam, 2015).

    Google Scholar 

  32. P. Ramírez, S. Mafé, A. Alcaraz, and J. Cervera, J. Phys. Chem. B 107, 13178 (2003).

    Article  Google Scholar 

  33. A. H. Galama, J. W. Post, H. V. M. Hamelers, et al., J. Membr. Sci. Res. 2, 128 (2016).

    Google Scholar 

  34. D. R. Lide, Handbook of Chemistry and Physics (CRC, Boca Raton, 2003–2004), 84th Ed.

    Google Scholar 

  35. A. C. Ferrari and D. M. Basko, Nat. Nanotechnol. 8, 235 (2013).

    Article  CAS  Google Scholar 

  36. M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, et al., Phys. Chem. Chem. Phys. 9, 1276 (2007).

    Article  CAS  Google Scholar 

  37. D. Quattrini, D. Serrano, and S. Perez Catán, Granul. Matter 3, 125 (2001).

    Article  CAS  Google Scholar 

  38. K. S. W. Sing, D. H. Everett, R. A. W. Haul, et al., Pure Appl. Chem. 57, 603 (1985).

    Article  CAS  Google Scholar 

  39. P. K. Chu and L. Li, Mater. Chem. Phys. 96, 253 (2006).

    Article  CAS  Google Scholar 

  40. M. Mulder, Basic Principles of Membrane Technology (Kluwer Academic, Dordrecht, 1996).

    Book  Google Scholar 

  41. X. Chen, Y. Lin, Y. Lu, et al., Colloids Interface Sci. Commun. 5, 12 (2015).

    Article  CAS  Google Scholar 

  42. D. Mattia, H. Leese, and K. P. Lee, J. Membr. Sci. 475, 266 (2015).

    Article  CAS  Google Scholar 

  43. J. Schaep, C. Vandecasteele, A. W. Mohammad, and W. R. Bowen, Sep. Sci. Technol. 34, 3009 (1999).

    Article  CAS  Google Scholar 

  44. W. R. Bowen and J. S. Welfoot, Chem. Eng. Sci. 57, 1121 (2002).

    Article  CAS  Google Scholar 

  45. M. Aghayan, I. Hussainova, M. Gasik, et al., Thermochim. Acta 574, 140 (2013).

    Article  CAS  Google Scholar 

  46. M. Tschapek, C. Wasowski, and R. M. Torres Sanchez, J. Electroanal. Chem. 74, 167 (1976).

    Article  CAS  Google Scholar 

  47. R. G. Romanova and E. V. Petrova, Vestn. Kazansk. Tekhnol. Univ., No. 6, 73 (2006).

    Google Scholar 

  48. G. Mpourmpakis and G. Froudakis, J. Chem. Phys. 125, 204707 (2006).

    Article  Google Scholar 

  49. D. J. Cole, P. K. Ang, and K. P. Loh, J. Phys. Chem. Lett. 2, 1799 (2011).

    Article  CAS  Google Scholar 

  50. D. Umadevi and G. N. Sastry, Chem. Phys. Lett. 549, 39 (2012).

    Article  CAS  Google Scholar 

  51. M. Hamadanian, Z. Tavangar, and B. Noori, J. Mol. Struct. 1076, 49 (2014).

    Article  CAS  Google Scholar 

  52. P. Fievet, B. Aoubiza, A. Szymczyk, and J. Pagetti, J. Membr. Sci. 160, 267 (1999).

    Article  CAS  Google Scholar 

  53. I. I. Ryzhkov and A. V. Minakov, J. Membr. Sci. 520, 515 (2016).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Ryzhkov.

Additional information

Original Russian Text © D.V. Lebedev, A.V. Shiverskiy, M.M. Simunin, V.S. Solodovnichenko, V.A. Parfenov, V.V. Bykanova, S.V. Khartov, I.I. Ryzhkov, 2017, published in Membrany i Membrannye Tekhnologii, 2017, Vol. 7, No. 2, pp. 86–98.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lebedev, D.V., Shiverskiy, A.V., Simunin, M.M. et al. Preparation and ionic selectivity of carbon-coated alumina nanofiber membranes. Pet. Chem. 57, 306–317 (2017). https://doi.org/10.1134/S096554411704003X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S096554411704003X

Keywords

Navigation