Skip to main content
Log in

The impact of oxygen in physiological regulation of human multipotent mesenchymal cell functions

  • Reviews
  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

Significant progress in studying cellular mechanisms of tissue homeostasis and physiological remodeling has been made in recent decades. Undifferentiated cells, such as multipotent mesenchymal stromal (stem) cells (MMSCs), play an important role in these processes. MMSCs were found in practically all organs occupying specific tissue niches associated with the perivascular spaces. The main characteristic of MMSCs is their ability, on the one hand, to provide structural integrity of tissues and, on the other hand, to respond to paracrine stimuli and migrate to damaged target tissues, which promotes tissue reparation. A low partial oxygen tension is the main feature of the physiological and regeneration microenvironment, which may significantly modify stromal cell properties. This review analyzes the recent data on MMSC tissue niches in terms of the integration of these cells into a comprehensive system of physiological and reparative tissue remodeling and the role of partial oxygen pressure in the fulfillment of the MMSC potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fridenshtein, A.Ya. and Luriya, E.A., Kletochnye osnovy krovetvornogo mikrookruzheniya (Cellular Basis of Hemopoietic Microenvironment), Moscow: Meditsina, 1980.

    Google Scholar 

  2. Friedenstein, A.J., Chailakhyan, R.K., and Gerasimov, U.V., Bone Marrow Osteogenic Stem Cells: in Vitro Cultivation and Transplantation in Diffusion Chambers, Cell Tissue Kinet., 1987, vol. 20, no. 3, p. 263.

    PubMed  CAS  Google Scholar 

  3. Caplan, A.I., Mesenchymal Stem Cells, J. Orthop. Res, 1991, vol. 9, no. 5, p. 641.

    Article  PubMed  CAS  Google Scholar 

  4. Horwitz, E.M., Le Blanc K., Dominici M. Et Al. Clarification of the Nomenclature for MSC: The International Society for Cellular Therapy Position Statement, Cytotherapy, 2005, vol. 7, no. 5, p. 393.

    Article  PubMed  CAS  Google Scholar 

  5. da Silva-Meirelles, L., Chagastelles, P.C., and Nardi, B., Mesenchymal Stem Cells Reside in Virtually All Post-Natal Organs and Tissues, J. Cell Sci., 2006, vol. 119, no. 11, p. 2204.

    Article  PubMed  Google Scholar 

  6. Kolf, C.M., Cho, E., and Tuan, R.S., Biology of Adult Mesenchymal Stem Cells: Regulation of Niche, Self-Renewal and Differentiation, Arthritis Res, 2007, vol. 9, no. 1, p. 204.

    Article  Google Scholar 

  7. Rochefort, G.Y., Delorme, B., Lopez, A., et al., Multipotential Mesenchymal Stem Cells Are Mobilized Into Peripheral Blood by Hypoxia, Stem Cells, 2006, vol. 24, no. 10, p. 2202.

    Article  PubMed  CAS  Google Scholar 

  8. Maximow, A., Bindegewebe Und Blutbildende Gewebe, Handbuch der mikroskopischen Anatomie des Menschen. Herausgegeben von W. Mollendorff. Berlin: Verlag von J. Springer, 1928, p. 238.

    Google Scholar 

  9. Shchelkunov, S.I., Intima of Small Arteries and Veins, Arkh. Biol. Nauk, 1935, vol. 37, p. 609.

    Google Scholar 

  10. Andreeva, E.R., Pugach, I.M., Gordon, D., and Orekhov, A.N., Continuous Subendothelial Network Formed by Pericyte-Like Cells in Human Vascular Bed, Tissue Cell, 1998, vol. 30, no. 1, p. 127.

    Article  PubMed  CAS  Google Scholar 

  11. Nehls, V. and Drenckhan, D., Heterogeneity of Microvascular Pericytes for Smooth Muscle Type Alpha-Actin, J. Cell Biol., 1991, vol. 113, no. 1, p. 147.

    Article  PubMed  CAS  Google Scholar 

  12. Betsholtz, C., Lindblom, P., and Gerhardt, H., Role of Pericytes in Vascular Morphogenesis, EXS, 2005, vol. 94, p. 115.

    PubMed  Google Scholar 

  13. Farrington-Rock, C., Crofts, N., Doherty, M.J., et al., Chondrogenic and Adipogenic Potential of Microvascular Pericytes, Circulation, 2004, vol. 110, no. 15, p. 2226.

    Article  PubMed  CAS  Google Scholar 

  14. Collett, G.D. and Canfield, A.E., Angiogenesis and Pericytes in the Initiation of Ectopic Calcification, Circ. Res., 2005, vol. 96, no. 9, p. 930.

    Article  PubMed  CAS  Google Scholar 

  15. Shi, S. and Grontos, S., Perivascular Niche of Postnatal Mesenchymal Stem Cells in Human Bone Marrow and Dental Pulp, J. Bone Miner. Res., 2003, vol. 18, no. 4, p. 696.

    Article  PubMed  Google Scholar 

  16. Schwab, K.E. and Gargett, C.E., Co-Expression of Two Perivascular Cell Markers Isolates Mesenchymal Stem-Like Cells from Human Endometrium, Hum. Reprod., 2007, vol. 22, no. 11, p. 2903.

    Article  PubMed  CAS  Google Scholar 

  17. Traktuev, D., Merfeld-Clauss, LiJ., Kolonin, M., et al., A Population of Multipotent CD34-Positive Adipose Stromal Cells Share Pericyte and Mesenchymal Surface Markers, Reside in a Periendothelial Location, and Stabilize Endothelial Networks, Circ. Res., 2008, vol. 102, no. 1, p. 77.

    Article  PubMed  CAS  Google Scholar 

  18. Covas, D.T., Panepucci, R.A., Fontes, A.M., et al., Multipotent Mesenchymal Stromal Cells Obtained from Diverse Human Tissues Share Functional Properties and Gene-Expression Profile with CD146+ Perivascular Cells and Fibroblasts, Exp. Hematol., 2008, vol. 36, no. 5, p. 642.

    Article  PubMed  CAS  Google Scholar 

  19. Crisan, M., Yap, S., and Casteilla, L., A Perivascular Origin for Mesenchymal Stem Cells in Multiple Human Organs, Cell Stem Cell, 2008, vol. 3, no. 3, p. 301.

    Article  PubMed  CAS  Google Scholar 

  20. Caplan, A., All MSCs Are Pericytes?, Cell Stem Cell, 2008, vol. 3, no. 3, p. 229.

    Article  PubMed  CAS  Google Scholar 

  21. Caplan, A.I., Why Are MSCs Therapeutic? New Data: New Insight, J. Pathol., 2009, vol. 217, no. 2, p. 318.

    Article  PubMed  CAS  Google Scholar 

  22. Watt, F.M. and Hogan, B.L., Out of Eden: Stem Cells and Their Niches, Science, 2000, vol. 287, no. 5457, p. 1427.

    Article  PubMed  CAS  Google Scholar 

  23. Schofield, R., The Relationship between the Spleen Colonyforming Cell and the Haemopoietic Stem Cell, Blood Cells, 1978, vol. 4, p. 7.

    PubMed  CAS  Google Scholar 

  24. Verfaillie, C.M., Hematopoietic Stem Cells for Transplantation, Nat. Immunol, 2002, vol. 3, no. 4, p. 314.

    Article  PubMed  CAS  Google Scholar 

  25. Ma, T., Grayson, W.L., Frohlich, M., and Vunjak-Novakovic, G., Hypoxia and Stem Cell-Based Engineering of Mesenchymal Tissues, Biotechnol. Prog., 2009, vol. 25, no. 1, p. 32.

    Article  PubMed  CAS  Google Scholar 

  26. Ivanovic, Z., Hypoxia Or in Situ Normoxia: The Stem Cell Paradigm, J. Cell Physiol., 2009, vol. 219, no. 2, p. 271.

    Article  PubMed  CAS  Google Scholar 

  27. Eliasson, P. and Jönsson, J.I., The Hematopoietic Stem Cell Niche: Low in Oxygen But a Nice Place To Be, J. Cell Physiol., 2010, vol. 222, no. 1, p. 17.

    Article  PubMed  CAS  Google Scholar 

  28. Cipolleschi, M.G., Dellosbarba, P., and Olivotto, M., The Role of Hypoxia in the Maintenance of Hematopoietic Stem-Cells, Blood, 1993, vol. 82, no. 7, p. 2031.

    PubMed  CAS  Google Scholar 

  29. Parmar, K., Mauch, P., Vergilio, J.A., et al., Distribution of Hematopoietic Stem Cells in the Bone Marrow According to Regional Hypoxia, Proc. Natl. Acad. Sci. USA, 2007, vol. 104, no. 13, p. 5431.

    Article  PubMed  CAS  Google Scholar 

  30. Calvi, L.M., Adams, G.B., and Weibrecht, K.W., Osteoblastic Cells Regulate the Haematopoietic Stem Cell Niche, Nature, 2003, vol. 425, no. 6960, p. 841.

    Article  PubMed  CAS  Google Scholar 

  31. Kiel, M.J. and Morrison, S.J., Uncertainty in the Niches That Maintain Haematopoietic Stem Cells, Nat. Rev. Immunol., 2008, vol. 8, p. 290.

    Article  PubMed  CAS  Google Scholar 

  32. Vlaski, M., Lafarge, X., Chevaleyre, J., et al., Low Oxygen Concentration As a General Physiologic Regulator of Erythropoiesis Beyond the EPO-Related Downstream Tuning and a Tool for the Optimization of Red Blood Cell Production Ex Vivo, Exp. Hematol., 2009, vol. 37, no. 5, p. 573.

    Article  PubMed  CAS  Google Scholar 

  33. D’Ippolito, G.D., Diabira, S., and Howard, G.A., Low Oxygen Tension Inhibits Osteogenic Differentiation and Enhances Stemness of Human MIAMI Cells, Bone, 2006, vol. 39, p. 513.

    Article  PubMed  Google Scholar 

  34. Malladi, P., Xu, Y., Chiou, M., et al., Effect of Reduced Oxygen Tension on Chondrogenesis and Osteogenesis in Adipose-Derived Mesenchymal Cells, Am. J. Physiol. Cell Physiol., 2006, vol. 290, no. 4, p. 1139.

    Article  Google Scholar 

  35. Fehrer, C., Brunauer, R., Laschober, G., et al., Reduced Oxygen Tension Attenuates Differentiation Capacity of Human Mesenchymal Stem Cells and Prolongs Their Lifespan, Aging Cell, 2007, vol. 6, no. 6, p. 745.

    Article  PubMed  CAS  Google Scholar 

  36. Grayson, W.L., Zhao, F., Bunnell, B., and Ma, T., Hypoxia Enhances Proliferation and Tissue Formation of Human Mesenchymal Stem Cells, Biochem. Biophys. Res. Commun., 2007, vol. 358, no. 3, p. 948.

    Article  PubMed  CAS  Google Scholar 

  37. Buravkova, L.B., Grinakovskaya, O.S., Andreeva, E.R., et al., Characteristics of Mesenchymal Stromal Cells from Human Lipoaspirate Cultivated under Low Oxygen Contnt, Tsitologiya, 2009, vol. 51, no. 1, p. 5.

    CAS  Google Scholar 

  38. Dos, Santos F., Andrade, P.Z., Boura, J.S., et al., Ex Vivo Expansion of Human Mesenchymal Stem Cells: a More Effective Cell Proliferation Kinetics and Metabolism Under Hypoxia, J. Cell Physiol., 2010, vol. 223, no. 1, p. 27.

    Google Scholar 

  39. Iida, K., Takeda-Kawaguchi, T., Tezuka, Y., et al., Hypoxia Enhances Colony Formation and Proliferation But Inhibits Differentiation of Human Dental Pulp Cells, Arch. Oral Biol., 2010, vol. 55, no. 9, p. 648.

    Article  PubMed  CAS  Google Scholar 

  40. Nekanti, U., Dastidar, S., Venugopal, P., et al., Increased Proliferation and Analysis of Differential Gene Expression in Human Wharton’s Jelly-Derived Mesenchymal Stromal Cells Under Hypoxia, Cell, 2010, vol. 6, no. 5, p. 499.

    CAS  Google Scholar 

  41. Valorani, M.G., Germani, A., Otto, W.R., et al., Hypoxia Increases Sca-1/CD44 Co-Expression in Murine Mesenchymal Stem Cells and Enhances Their Adipogenic Differentiation Potential, Cell Tissue Res., 2010, vol. 341, no. 1, p. 111.

    Article  PubMed  CAS  Google Scholar 

  42. Basciano, L., Nemos, C., Foliguet, B., et al., Long Term Culture of Mesenchymal Stem Cells in Hypoxia Promotes a Genetic Program Maintaining Their Undifferentiated and Multipotent Status, BMC Cell Biol., 2011, vol. 12, no. 1, p. 12.

    Article  PubMed  CAS  Google Scholar 

  43. Grinakovskaya, O.S., Andreeva, E.R., Buravkova, L.B., et al, Low Oxygen Content Decelerates Commitment of Cultured Mesenchymal Stromal Progenitors from Fat Tissue in Response to Osteogenic Stimuli, Byull. Eksp. Biol. Med., 2009, vol. 147, no. 6, p. 704.

    Article  Google Scholar 

  44. Wang, D.W., Fermor, B., Gimble, J.M., et al., Influence of Oxygen on the Proliferation and Metabolism of Adipose Derived Adult Stem Cells, J. Cell Physiol., 2005, vol. 204, no. 1, p. 184.

    Article  PubMed  CAS  Google Scholar 

  45. Khan, W.S., Adesida, A.B., Tew, S.R., et al., Bone Marrow-Derived Mesenchymal Stem Cells Express the Pericyte Marker 3G5 in Culture and Show Enhanced Chondrogenesis in Hypoxic Conditions, J. Orthop. Res., 2010, vol. 28, no. 6, p. 834.

    PubMed  CAS  Google Scholar 

  46. Annabi, B., Lee, Y.T., Turcotte, S., et al., Hypoxia Promotes Murine Bone-Marrow-Derived Stromal Cell Migration and Tube Formation, Stem Cells, 2003, vol. 21, no. 3, p. 337.

    Article  PubMed  CAS  Google Scholar 

  47. Lavrentieva, A., Majore, I., Kasper, C., and Hass, R., Effects of Hypoxic Culture Conditions on Umbilical Cord-Derived Human Mesenchymal Stem Cells, Cell Commun. Signal., 2010, vol. 8, p. 18.

    Article  PubMed  Google Scholar 

  48. Semenza, G.L., Hypoxia-Inducible Factors in Physiology and Medicine, Cell, 2012, vol. 148, no. 3, p. 399.

    Article  PubMed  CAS  Google Scholar 

  49. Buravkova, L.B., Rylova, Yu.V., Gal’chuk, S.V., and Andreeva, E.R., Characteristics of Metabolism and Gene Expression in Human Fat Tissue MMSCs Cultured at Different Oxygen Contents, in Stvolovye kletki i regenerativnaya meditsina (Stem Cells and Body Regeneration), Tkachuk, V.A, Ed., Moscow: Maks, 2011.

    Google Scholar 

  50. Zvaifler, N.J., Marinova-Mutafchieva, L., Adams, G., et al., Mesenchymal Precursor Cells in the Blood of Normal Individuals, Arthritis Res, 2000, vol. 2, p. 477.

    Article  PubMed  CAS  Google Scholar 

  51. Kassis, I., Zangi, L., Rivkin, R., et al., Isolation of Mesenchymal Stem Cells from G-CSF-Mobilized Human Peripheral Blood Using Fibrin Microbeads, Bone Marrow Transplant, 2006, vol. 37, no. 10, p. 967.

    Article  PubMed  CAS  Google Scholar 

  52. Mansilla, E., Marin, G.H., Drago, H., et al., Bloodstream Cells Phenotypically Identical to Human Mesenchymal Bone Marrow Stem Cells Circulate in Large Amounts Under the Influence of Acute Large Skin Damage: New Evidence for Their Use in Regenerative Medicine, Transplant. Proc., 2006, vol. 38, no. 3, p. 967.

    Article  PubMed  CAS  Google Scholar 

  53. Wang, Y., Johnsen, H.E., Mortensen, S., et al., Changes in Circulating Mesenchymal Stem Cells, Stem Cell Homing Factor, and Vascular Growth Factors in Patients with Acute ST Elevation Myocardial Infarction Treated with Primary Percutaneous Coronary Intervention, Heart, 2006, vol. 92, no. 6, p. 768.

    Article  PubMed  CAS  Google Scholar 

  54. Hyvelin, J.M., Howell, K., Nichol, A., et al., Inhibition of Rho-Kinase Attenuates Hypoxia-Induced Angiogenesis in the Pulmonary Circulation, Circ. Res., 2005, vol. 97, no. 2, p. 185.

    Article  PubMed  CAS  Google Scholar 

  55. Ceradini, D.J. and Gurtner, G.C., Homing to Hypoxia: HIF-1 As a Mediator of Progenitor Cell Recruitment to Injured Tissue, Trends Cardiovasc. Med, 2005, vol. 15, no. 2, p. 57.

    Article  PubMed  CAS  Google Scholar 

  56. Tepper, O.M., Galiano, R.D., Capla, J.M., et al., Human Endothelial Progenitor Cells from Type II Diabetics Exhibit Impaired Proliferation, Adhesion, and Incorporation Into Vascular Structures, Circulation, 2002, vol. 106, no. 22, p. 2781.

    Article  PubMed  Google Scholar 

  57. Zhang, D., Fan, G.C., Zhou, X., et al., Over-Expression of CXCR4 on Mesenchymal Stem Cells Augments Myoangiogenesis in the Infarcted Myocardium, J. Mol. Cell. Cardiol., 2008, vol. 44, p. 281.

    Article  PubMed  CAS  Google Scholar 

  58. Haider, H., Jiang, S., Idris, N.M., and Ashraf, M., IGF-1-Overexpressing Mesenchymal Stem Cells Accelerate Bone Marrow Stem Cell Mobilization Via Paracrine Activation of SDF-1α/CXCR4 Signaling to Promote Myocardial Repair, Circ. Res., 2008, vol. 103, p. 1300.

    Article  PubMed  CAS  Google Scholar 

  59. Abbott, J.D., Huang, Y., Liu, D., et al., Stromal Cell-Derived Factor-1alpha Plays a Critical Role in Stem Cell Recruitment to the Heart After Myocardial Infarction But Is Not Sufficient to Induce Homing in the Absence of Injury, Circulation, 2004, vol. 110, p. 3300.

    Article  PubMed  Google Scholar 

  60. Rosova, I., Dao, M., Capoccia, B., et al., Hypoxic Preconditioning Results in Increased Motility and Improved Therapeutic Potential of Human Mesenchymal Stem Cells, Stem Cells, 2008, vol. 26, no. 8, p. 2173.

    Article  PubMed  CAS  Google Scholar 

  61. Fox, J.M., Chamberlain, G., Ashton, B.A., and Middleton, J., Recent Advances Into the Understanding of Mesenchymal Stem Cell Trafficking, Br. J. Haematol., 2007, vol. 137, no. 6, p. 491.

    Article  PubMed  CAS  Google Scholar 

  62. Nedeau, A.E., Bauer, R.J., Gallagher, K., et al., A CXCL5- and BFGF-Dependent Effect of PDGF-B-Activated Fibroblasts in Promoting Trafficking and Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells, Exp. Cell Res., 2008, vol. 314, nos. 11–12, p. 2176.

    Article  PubMed  CAS  Google Scholar 

  63. Ottino, P., Finley, J., Rojo, E., et al., Hypoxia Activates Matrix Metalloproteinase Expression and the VEGF System in Monkey Choroid-Retinal Endothelial Cells: Involvement of Cytosolic Phospholipase A2 Activity, Mol. Vis., 2004, vol. 10, p. 341.

    PubMed  CAS  Google Scholar 

  64. Zhu, W., Chen, J., Cong, X., et al., Hypoxia and Serum Deprivation-Induced Apoptosis in Mesenchymal Stem Cells, Stem Cells, 2006.

  65. Peterson, K.M., Aly, A., Lerman, A., et al., Improved Survival of Mesenchymal Stromal Cell After Hypoxia Preconditioning: Role of Oxidative Stress, Life Sci., 2011, vol. 88, nos. 1–2, p. 65.

    Article  PubMed  CAS  Google Scholar 

  66. Zhang, W., Su, X., Gao, Y., et al., Berberine Protects Mesenchymal Stem Cells Against Hypoxia-Induced Apoptosis in Vitro, Biol. Pharmac. Bull., 2009, vol. 32, no. 8, p. 1335.

    Article  CAS  Google Scholar 

  67. Chang, W., Song, B.-W., Lim, S., et al., Mesenchymal Stem Cells Pretreated with Delivered Hph-1-Hsp70 Protein Are Protected from Hypoxia-Mediated Cell Death and Rescue Heart Functions from Myocardial Injury, Stem Cells, 2009.

  68. Nie, Y., Han, B.-M., Liu, X.-B., et al., Identification of MicroRNAs Involved in Hypoxia- and Serum Deprivation-Induced Apoptosis in Mesenchymal Stem Cells, Int. J. Biol. Sci., 2011, vol. 7, no. 6, p. 762.

    Article  PubMed  CAS  Google Scholar 

  69. Hung, S.-C., Pochampally, R.R., Hsu, S.-C., et al., Short-Term Exposure of Multipotent Stromal Cells to Low Oxygen Increases Their Expression of CX3CR1 and CXCR4 and Their Engraftment In Vivo, PloS One, 2007, vol. 2, no. 5.

  70. Efimenko, A., Starostina, E., Kalinina, N., and Stolzing, A., Angiogenic Properties of Aged Adipose Derived Mesenchymal Stem Cells After Hypoxic Conditioning, J. Trans. Med., 2011, vol. 9, p. 10.

    Article  CAS  Google Scholar 

  71. Lee, S.H., Lee, Y.J., Song, C.H., et al., Role of FAK Phosphorylation in Hypoxia-Induced HMSCS Migration: Involvement of VEGF As Well As MAPKS and ENOS Pathways, Am. J. Physiol. Cell Physiol., 2010, vol. 298, no. 4, p. 847.

    Article  Google Scholar 

  72. Busletta, C., Novo, E., Valfre, Di., Bonzo, L., et al., Dissection of the Biphasic Nature of Hypoxia-Induced Motogenic Action in Bone Marrow-Derived Human Mesenchymal Stem Cells, Stem Cells, 2011.

  73. Deschepper, M., Oudina, K., David, B., et al., Survival and Function of Mesenchymal Stem Cells (MSCs) Depend on Glucose to Overcome Exposure to Long-Term, Severe and Continuous Hypoxia, J. Cell. Mol. Med., 2011, vol. 15, no. 7, p. 1505.

    Article  PubMed  CAS  Google Scholar 

  74. Potier, E., Ferreira, E., and Meunier, A., et al. Prolonged Hypoxia Concomitant with Serum Deprivation Induces Massive Human Mesenchymal Stem Cell Death, Tissue Eng., 2007, vol. 13, no. 6, p. 1325.

    Article  PubMed  CAS  Google Scholar 

  75. Crisostomo, P.R., Wang, Y., Markel, T., et al., Human Mesenchymal Stem Cells Stimulated by TNF-Alpha, LPS, Or Hypoxia Produce Growth Factors by An NF Kappa B-But Not JNK-Dependent Mechanism, Am. J. Physiol. Cell Physiol., 2008, vol. 294, no. 3, p. 675.

    Article  Google Scholar 

  76. Rubina, K., Kalinina, N., Efimenko, A., et al., Adipose Stromal Cells Stimulate Angiogenesis Via Promoting Progenitor Cell Differentiation, Secretion of Angiogenic Factors, and Enhancing Vessel Maturation, Tissue Eng., 2009, vol. 15, no. 8, p. 2039.

    Article  CAS  Google Scholar 

  77. Kalinina, N.I., Sysoeva, V.Yu., Rubina, K.A., et al., Mesenchymal Stem Cells in Tissue Growth and Repair, Acta Nat., 2011.

  78. Kode, J.A., Mukherjee, S., Joglekar, M.V., and Hardikar, A.A., Mesenchymal Stem Cells: Immunobiology and Role in Immunomodulation and Tissue Regeneration, Cytotherapy, 2009, vol. 11, no. 4, p. 377.

    Article  PubMed  CAS  Google Scholar 

  79. Buravkova, L.B. and Andreeva, E.R., Interaction of Human Mesenhymal Stromal and Immune Cells, Hum. Physiol., 2010, vol. 36, no. 5, p. 590.

    Article  CAS  Google Scholar 

  80. Yagi, H., Soto-Gutierrez, A., Parekkadan, B., et al., Mesenchymal Stem Cells: Mechanisms of Immunomodulation and Homing, Cell Transpl., 2010, vol. 19, no. 6, p. 667.

    Article  Google Scholar 

  81. Gornostaeva, A.N., Andreeva, E.R., Andrianova, I.V., et al., Evaluation of Immunosypressive Effects of Multipotent Mesenchymal Stromal Cells at Various Content of O2 in Culture Medium, Klet. Tekhnol. Biol. Med., 2011, no. 2, p. 92.

  82. Li, Z., Wei, H., Deng, L., et al., Expression and Secretion of Interleukin-1-Beta, Tumour Necrosis Factor-Alpha and Interleukin-10 by Hypoxia- and Serum-Deprivation-Stimulated Mesenchymal Stem Cells, FEBS J., 2010, vol. 277, no. 18, p. 3688.

    Article  PubMed  CAS  Google Scholar 

  83. Chen, G., Nayan, M., Duong, M., et al., Marrow Stromal Cells for Cell-Based Therapy: the Role of Antiinflammatory Cytokines in Cellular Cardiomyoplasty, Ann. Thorac. Surg., 2010, vol. 90, no. 1, p. 190.

    Article  PubMed  Google Scholar 

  84. Khrushchov, N.G., Gistogenez soedinitel’noi tkani (Histogenesis of Connective Tissue), Moscow: Nauka, 1976.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © L.B. Buravkova, E.R. Andreeva, A.I. Grigoriev, 2012, published in Fiziologiya Cheloveka, 2012, Vol. 38, No. 4, pp. 121–130.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buravkova, L.B., Andreeva, E.R. & Grigoriev, A.I. The impact of oxygen in physiological regulation of human multipotent mesenchymal cell functions. Hum Physiol 38, 444–452 (2012). https://doi.org/10.1134/S0362119712040032

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119712040032

Keywords

Navigation