Skip to main content
Log in

Dark Matter and Dark Radiation from Evaporating Kerr Primordial Black Holes

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

The mechanism of generation of dark matter and dark radiation from the evaporation of primordial black holes is very interesting. We consider the case of Kerr black holes to generalize previous results obtained in the Schwarzschild case. For dark matter, the results do not change dramatically, and the bounds on warm dark matter apply similarly: in particular, the Kerr case cannot save the scenario of black hole domination for light dark matter. For dark radiation, the expectations for \(\Delta N_{\textrm{eff}}\) do not change significantly with respect to the Schwarzschild case, but for an enhancement in the case of spin 2 particles: in the massless case, however, the projected experimental sensitivity would be reached only for extremal black holes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. It is interesting to compare our numerical result with a previous analytical approximation, valid in the Schwarzschild case [7], \(cp_{\textrm{ev}}\approx\langle E_{X}(t_{\textrm{ev}})\rangle\approx 6\,k_{B}T^{S}_{\textrm{BH}}\).

  2. It is reasonable to assume that the entropy is conserved from matter-radiation equality to the present time, so that \(\alpha\approx\alpha^{\prime}\).

  3. A more sophisticated analysis should follow the lines of [27].

  4. If the warm particles decouple when they are relativistic, their momentum distribution function remains constant until gravitational clustering begins. All particle momenta scale as \(a^{-1}\), which we can describe by scaling their temperature \(T_{W}\) accordingly. When the particles become nonrelativistic, we can use \(p=m_{W}v_{W}\).

References

  1. Y. B. Zeldovitch and I. D. Novikov, “The hypothesis of cores retarded during expansion and the hot cosmological model,” Soviet Astronomy 10 (4), 602-603 (1967).

    ADS  Google Scholar 

  2. S. Hawking, “Gravitationally collapsed objects of very low mass,” Mon. Not. Roy. Astron. Soc. 152, 75 (1971).

    Article  ADS  Google Scholar 

  3. B. J. Carr and S. W. Hawking, “Black holes in the early Universe,” Mon. Not. Roy. Astron. Soc. 168, 399–415 (1974).

    Article  ADS  Google Scholar 

  4. S. W. Hawking, “Particle creation by black holes,” Commun. Math. Phys. 43, 199–220 (1975).

    Article  ADS  MathSciNet  Google Scholar 

  5. S. W. Hawking, “Black hole explosions,” Nature 248, 30–31 (1974).

    Article  ADS  Google Scholar 

  6. Y. B. Zeldovich, “Charge asymmetry of the universe due to black hole evaporation and weak interaction asymmetry,” Pisma v Zh. Eksp. Teor. Fiz. 24, 29–32 (1976).

  7. T. Fujita, M. Kawasaki, K. Harigaya, and R. Matsuda, “Baryon asymmetry, dark matter, and density perturbation from primordial black holes,” Phys. Rev. D 89 (10), 103501 (2014).

    Article  ADS  Google Scholar 

  8. O. Lennon, J. March-Russell, R. Petrossian-Byrne, and H. Tillim, “Black hole genesis of dark matter,” JCAP 04, 009 (2018).

  9. L. Morrison, S. Profumo, and Y. Yu, “Melanopogenesis: Dark Matter of (almost) any mass and baryonic matter from the evaporation of primordial black holes weighing a ton (or less),” JCAP 1905, 005 (2019).

  10. I. Masina, “Dark matter and dark radiation from evaporating primordial black holes,” Eur. Phys. J. Plus 135 (7), 552 (2020).

    Article  Google Scholar 

  11. D. Hooper, G. Krnjaic, and S. D. McDermott, “Dark radiation and superheavy dark matter from black hole domination,” JHEP 08, 001 (2019).

  12. C. Lunardini and Y. F. Perez-Gonzalez, “Dirac and Majorana neutrino signatures of primordial black holes,” JCAP 08, 014 (2020).

  13. D. Hooper, G. Krnjaic, J. March-Russell, S. D. McDermott, and R. Petrossian-Byrne, “Hot gravitons and gravitational waves from kerr black holes in the early universe,” arXiv: 2004.00618.

  14. B. Carr, K. Kohri, Y. Sendouda, and J. Yokoyama, “Constraints on Primordial Black Holes,” arXiv:2002.12778.

  15. M. Y. Khlopov, A. Barrau, and J. Grain, “Gravitino production by primordial black hole evaporation and constraints on the inhomogeneity of the early universe,” Class. Quantum Grav. 23, 1875–1882 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  16. M. Y. Khlopov, “Primordial black holes,” Res. Astron. Astrophys. 10, 495–528 (2010).

    Article  ADS  Google Scholar 

  17. T. Papanikolaou, V. Vennin, and D. Langlois, “Gravitational waves from a universe filled with primordial black holes,” JCAP 03, 053 (2021).

  18. G. Domènech, C. Lin, and M. Sasaki, “Gravitational wave constraints on the primordial black hole dominated early universe,” JCAP 04, 062 (2021).

  19. S. Datta, A. Ghosal, and R. Samanta, “Baryogenesis from ultralight primordial black holes and strong gravitational waves,” arXiv: 2012.14981.

  20. G. Domènech, V. Takhistov, and M. Sasaki, “Exploring evaporating primordial black holes with gravitational waves,” arXiv: 2105.06816.

  21. J. D. Barrow, E. J. Copeland, E. W. Kolb, and A. R. Liddle, “Baryogenesis in extended inflation. 2. Baryogenesis via primordial black holes,” Phys. Rev. D 43, 984–994 (1991).

    Article  ADS  Google Scholar 

  22. D. Baumann, P. J. Steinhardt, and N. Turok, “Primordial black Hole Baryogenesis,” hep-th/0703250.

  23. R. P. Kerr, “Gravitational field of a spinning mass as an example of algebraically special metrics,” Phys. Rev. Lett. 11, 237–238 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  24. D. N. Page, “Particle Emission Rates from a Black Hole. 2. Massless Particles from a Rotating Hole,” Phys. Rev. D 14, 3260–3273 (1976).

    Article  ADS  Google Scholar 

  25. M. Viel, J. Lesgourgues, M. J. Haehnelt, S. Matarrese, and A. Riotto, “Constraining warm dark matter candidates including sterile neutrinos and light gravitinos with WMAP and the Lyman-alpha forest,” Phys. Rev. D 71, 063534 (2005).

    Article  ADS  Google Scholar 

  26. I. Baldes, Q. Decant, D. C. Hooper, and L. Lopez-Honorez, “Non-Cold Dark Matter from Primordial Black Hole Evaporation,” JCAP 08, 045 (2020).

  27. J. Auffinger, I. Masina, and G. Orlando, “Bounds on warm dark matter from Schwarzschild primordial black holes,” Eur. Phys. J. Plus 136 (2), 261 (2021).

    Article  Google Scholar 

  28. M. Fishbach, D. E. Holz, and B. Farr, “Are LIGO’s black holes made from smaller black holes?,” Astrophys. J. Lett. 840 (2), L24 (2017).

    Article  ADS  Google Scholar 

  29. A. Arbey and J. Auffinger, “BlackHawk: A public code for calculating the Hawking evaporation spectra of any black hole distribution,” Eur. Phys. J. C 79 (8), 693 (2019).

    Article  ADS  Google Scholar 

  30. P. Gondolo, P. Sandick, and B. Shams Es Haghi, “Effects of primordial black holes on dark matter models,” Phys. Rev. D 102 (9), 095018 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  31. N. Bernal and O. Zapata, “Gravitational dark matter production: primordial black holes and UV freeze-in,” Phys. Lett. B 815, 136129 (2021).

    Article  Google Scholar 

  32. N. Bernal and O. Zapata, “dark matter in the time of primordial black holes,” JCAP 03, 015 (2021).

  33. D. Hooper and G. Krnjaic, “GUT baryogenesis with primordial black holes,” Phys. Rev. D 03 (4), 043504 (2021).

    Article  ADS  Google Scholar 

  34. Y. F. Perez-Gonzalez and J. Turner, “Assessing the tension between a black hole dominated early universe and leptogenesis,” arXiv: 2010.0356.

  35. S. Jyoti Das, D. Mahanta, and D. Borah, “Low scale leptogenesis and dark matter in the presence of primordial black holes,” arXiv: 2104.14496.

  36. M. Khlopov, “Fundamental particle structure in the cosmological dark matter,” Int. J. Mod. Phys. A 28, 1330042 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  37. Y. Akrami et al., “Planck 2018 results. X. Constraints on inflation,” Astron. Astrophys. 641, A10 (2020).

    Article  Google Scholar 

  38. C. Keith, D. Hooper, N. Blinov, and S. D. McDermott, “Constraints on Primordial Black Holes From Big Bang Nucleosynthesis Revisited,” Phys. Rev. D 102 (10), 103512 (2020).

    Article  ADS  Google Scholar 

  39. A. Arbey, J. Auffinger, and J. Silk, “Evolution of primordial black hole spin due to Hawking radiation,” Mon. Not. Roy. Astron. Soc. 494 (1), 1257–1262 (2020).

    Article  ADS  Google Scholar 

  40. D. N. Page, “Particle emission rates from a black hole: massless particles from an uncharged, nonrotating hole,” Phys. Rev. D 13, 198–206 (1976).

    Article  ADS  Google Scholar 

  41. R. Dong, W. H. Kinney, and D. Stojkovic, “Gravitational wave production by Hawking radiation from rotating primordial black holes,” JCAP 10, 034 (2016).

  42. B. E. Taylor, C. M. Chambers, and W. A. Hiscock, “Evaporation of a Kerr black hole by emission of scalar and higher spin particles,” Phys. Rev. D 58, 044012 (1998).

    Article  ADS  Google Scholar 

  43. E. V. Bugaev and K. V. Konishchev, “Constraints on diffuse neutrino background from primordial black holes,” Phys. Rev. D 65, 123005 (2002).

    Article  ADS  Google Scholar 

  44. V. Iršič et al., “New Constraints on the free-streaming of warm dark matter from intermediate and small scale Lyman-\(\alpha\) forest data,” Phys. Rev. D 96 (2), 023522 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  45. P. Bode, J. P. Ostriker, and N. Turok, “Halo formation in warm dark matter models,” Astrophys. J. 556, 93–107 (2001).

    Article  ADS  Google Scholar 

  46. P. F. de Salas and S. Pastor, “Relic neutrino decoupling with flavour oscillations revisited,” JCAP 1607, 051 (2016).

  47. N. Aghanim et al., “Planck 2018 results. VI. Cosmological parameters,” Astron. Astrophys. 641, A6 (2020).

    Article  Google Scholar 

  48. N. Bernal and O. Zapata, “Self-interacting Dark Matter from Primordial Black Holes,” JCAP 03, 007 (2021).

  49. A. Arbey, J. Auffinger, P. Sandick, B. Shams Es Haghi, and K. Sinha, “Precision calculation of dark radiation from spinning primordial black holes and early matter-dominated eras,” Phys. Rev. D 103 (12), 123549 (2021).

    Article  ADS  Google Scholar 

Download references

Funding

NOTE ADDED

After this work was submitted, a related work by Arbey et al. [49] was posted, which confirmed and further extended our results.

After this work was submitted, a related work by Arbey et al. [49] was posted, which confirmed and further extended our results.

FUNDING

I.M. acknowledges partial support by the research project TAsP (Theoretical Astroparticle Physics) funded by the Istituto Nazionale di Fisica Nucleare (INFN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabella Masina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masina, I. Dark Matter and Dark Radiation from Evaporating Kerr Primordial Black Holes. Gravit. Cosmol. 27, 315–330 (2021). https://doi.org/10.1134/S0202289321040101

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289321040101

Navigation