Skip to main content
Log in

Constraints from Observational Data for a Running Cosmological Constant and Warm Dark Matter with Curvature

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

It is known than the inclusion of spatial curvature can modify the evolution of matter perturbations and affect the Large Scale Structure (LSS) formation. We quantify the effects of the nonzero spatial curvature in terms of LSS formation for a cosmological model with a running vacuum energy density and a warm dark matter component. The evolution of density perturbations and the modified shape of their power spectrum are constructed and analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Here and from now on we use the notations \(\Omega_{i}(z)=\rho_{i}(z)/\rho^{0}_{c}\), where \(\rho^{0}_{c}=3H_{0}^{2}/(8\pi G)\). It is easy to see that this is the density relative to the critical density at \(a_{0}\), that means nowadays, and not to the time-dependent density.

REFERENCES

  1. N. Aghanim et al., “Planck 2018 results. VI. Cosmological parameters,” arXiv: 1807.06209.

  2. L. Anderson et al., “The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: baryon acoustic oscillations in the Data Releases 10 and 11 Galaxy samples,” MNRAS 441 (1), 24 (2014).

    Article  ADS  Google Scholar 

  3. S. Weinberg, “The cosmological constant problem,” Rev. Mod. Phys. 61, 1 (1989).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. S. Weinberg, “Anthropic bound on the cosmological constant,” Phys. Rev. Lett. 59, 2607 (1987).

    Article  ADS  Google Scholar 

  5. I. L. Shapiro and J. Solà, “Scaling behavior of the cosmological constant: Interface between quantum field theory and cosmology,” JHEP 02, 006 (2002).

  6. I. L. Shapiro, “Effective action of vacuum: Semiclassical approach,” Class. Quant. Grav. 25,103001 (2008).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. V. Sahni and A. A. Starobinsky, “The case for a positive cosmological \(\Lambda\)-term,” Int. Journ. Mod Phys.D 9, 373 (2000).

    Article  ADS  Google Scholar 

  8. P. J. E. Peebles and B. Ratra, “The cosmological constant and dark energy,” Rev. Mod. Phys. 75, 559 (2003).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. V. Sahni and A. Starobinsky, “Reconstructing Dark Energy,” Int. J. Mod. Phys. D 15, 2105 (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. G. Bertone, D. Hooper, and J. Silk, “Particle dark matter: Evidence, candidates and constraints,” Phys. Rep. 405, 279 (2005).

    Article  ADS  Google Scholar 

  11. M. Tegmark et al., “The three-dimensional power spectrum of galaxies from the Sloan digital sky survey,” Astroph. J. 606, 702 (2004).

    Article  ADS  Google Scholar 

  12. N. Aghanim et al., “Planck 2018 results. V. CMB power spectra and likelihoods,” arXiv: 1907.12875.

  13. S. Capozziello and M. De Laurentis, “Extended theories of gravity,” Phys. Rep. 509, 167 (2011).

    Article  ADS  MathSciNet  Google Scholar 

  14. I. L. Buchbinder, S. D. Odintsov, and I. L. Shapiro, Effective action in quantum gravity (IOP Publishing, Bristol, 1992).

    Google Scholar 

  15. T. Taylor and G. Veneziano, “Quantum gravity at large distances and the cosmological constant,” Nucl. Phys. B 345, 210 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  16. B. L. Giacchini, T. de Paula Netto, and I. L. Shapiro, “On the Vilkovisky unique effective action in quantum gravity,” arXiv: 2006.04217.

  17. I. L. Shapiro and J. Solà, “On the possible running of the cosmological ‘constant’,” Phys. Lett. B 682, 105 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  18. I.L. Shapiro, J. Solà, C. España-Bonet, and P. Ruiz-Lapuente, “Variable cosmological constant as a Planck scale effect,” Phys. Lett. B 574, 149 (2003).

    Article  ADS  MATH  Google Scholar 

  19. J. C. Fabris, I. L. Shapiro, and J. Solà, “Density perturbations for running cosmological constant,” JCAP 0702, 016 (2007).

  20. I. L. Shapiro, J. Solà, and H. Stefancic, “Running \(G\) and \(\Lambda\) at low energies from physics at M\({}_{X}\): possible cosmological and astrophysical implications,” JCAP 0501, 012 (2005).

  21. J. Grande, J. Solà, J. C. Fabris, and I. L. Shapiro, “Cosmic perturbations with running G and Lambda,” Class. Quantum Grav. 27, 105004 (2010).

    Article  ADS  MATH  Google Scholar 

  22. J. Solá, “Cosmological constant and vacuum energy: old and new ideas,” J. Phys.: Conf. Series. 453 (IOP Publishing, 2013).

  23. E. L. D. Perico and D. A. Tamayo, “Running vacuum cosmological models: linear scalar perturbations,” JCAP 1708, 026 (2017).

  24. S. Basilakos, N. E. Mavromatos, and J. Solá, “Gravitational and chiral anomalies in the running vacuum universe and matter-antimatter asymmetry,” Phys. Rev. D D01, 045001 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  25. S. Hannestad and R. J. Scherrer, “Self-interacting warm dark matter,” Phys. Rev. D 62, 043522 (2000).

    Article  ADS  Google Scholar 

  26. P. Bode, J. P. Ostriker, and N. Turok, “Halo formation in warm dark matter models,” Astroph. J.556, 93 (2001).

    Article  ADS  Google Scholar 

  27. M. Viel, J. Lesgourgues, M. G. Haehnelt, S. Matarrese, and A. Riotto, “Constraining warm dark matter candidates including sterile neutrinos and light gravitinos with WMAP and the Lyman-\(\alpha\) forest,” Phys. Rev. D 71, 063534 (2005).

    Article  ADS  Google Scholar 

  28. A. D. Sakharov, “The initial stage of an expanding universe and the appearance of a nonuniform distribution of matter,” Sov. Phys. JETP 22, 241 (1966).

    ADS  Google Scholar 

  29. G. de Berredo-Peixoto, I. L. Shapiro, and F. Sobreira, “Simple cosmological model with relativistic gas,” Mod. Phys. Lett. A 20, 2723 (2005).

    Article  ADS  MATH  Google Scholar 

  30. F. Jüttner, “Die Dynamik eines bewegten Gases in der Relativit’átstheorie,” Ann. der Physik 6, 145 (1911).

    Article  ADS  MATH  Google Scholar 

  31. J. C. Fabris, I. L. Shapiro, and F. Sobreira, “DM particles: how warm they can be?” JCAP 0902, 001 (2009).

  32. J. C. Fabris, I. L. Shapiro, and A. M. Velasquez-Toribio, “Testing dark matter warmness and quantity via the reduced relativistic gas model,” Phys. Rev. D 85, 023506 (2012).

    Article  ADS  Google Scholar 

  33. W. S. Hipólito-Ricaldi, R. F. Marttens, J. C. Fabris, I. L. Shapiro, and L. Casarini, “On general features of warm dark matter with reduced relativistic gas,” Eur. Phys. J. C 78, 365 (2018).

    Article  ADS  Google Scholar 

  34. J. A. Agudelo Ruiz, T. de Paula Netto, J. C. Fabris, and I.L. Shapiro, Primordial universe with the running cosmological constant, arXiv:1911. 06315; to appear in Eur. Phys. J. C.

  35. Ya. B. Zeldovich and A. A. Starobinsky, “Particle production and vacuum polarization in an anisotropic gravitational field,” Sov. Phys. JETP 34, 1159 (1972); [Zh. Eksp. Teor. Fiz. 61, 2161 (1971)].

    ADS  Google Scholar 

  36. A. Dobado and A. L. Maroto, “Particle production from nonlocal gravitational effective action,” Phys. Rev. D 60, 104045 (1999).

    Article  ADS  MATH  Google Scholar 

  37. D. M. Scolnic et al., “The complete light-curve sample of spectroscopically confirmed SNe Ia from Pan-STARRS1 and cosmological constraints from the combined pantheon sample,” Astroph. J. 859, 101 (2018).

    Article  ADS  Google Scholar 

  38. L. Anderson et al., “The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: baryon acoustic oscillations in the Data Releases 10 and 11 Galaxy samples,” MNRAS 441, 24 (2014).

    Article  ADS  Google Scholar 

  39. J. Ooba, B. Ratra, and N. Sugiyama, “Planck 2015 constraints on the non-flat \(\Lambda\)CDM inflation model,” Astroph. J. 864, 80 (2018).

    Article  ADS  Google Scholar 

  40. J. Ooba, B. Ratra, and N. Sugiyama, “Planck 2015 constraints on the non-flat XCDM inflation model,” Astroph. J. 869, 34 (2018).

    Article  ADS  Google Scholar 

  41. J. Ooba, B. Ratra, and N. Sugiyama, “Planck 2015 constraints on the nonflat \(\phi\)CDM inflation model,” Astroph. J.866, 68 (2018).

    Article  ADS  Google Scholar 

  42. C. Park and B. Ratra, “observational constraints on the tilted spatially flat and the untilted nonflat \(\phi\)CDM dynamical Dark Energy inflation models,” Astroph. J. 868, 83 (2018).

    Article  ADS  Google Scholar 

  43. C. Park and B. Ratra, “Observational constraints on the tilted flat-XCDM and the untilted nonflat XCDM dynamical dark energy inflation parameterizations,” Astroph. Space Sci. 364, 82 (2019).

    Article  ADS  Google Scholar 

  44. A. M. Velasquez-Toribio and A. dos R. Magnago, “Observational constraints on the non-at \(\Lambda\)CDM model and a null test using the transition redshift,” Eur. Phys. J. C 80, 562 (2020).

    Article  ADS  Google Scholar 

  45. J. Ryan, S. Doshi, and B. Ratra, “Constraints on dark energy dynamics and spatial curvature from Hubble parameter and baryon acoustic oscillation data,” MNRAS 480, 759 (2018).

    Article  ADS  Google Scholar 

  46. J. Ryan, Y. Chen, and B. Ratra, “Baryon acoustic oscillation, Hubble parameter, and angular size measurement constraints on the Hubble constant, dark energy dynamics, and spatial curvature,” MNRAS 488, 3844 (2019).

    Article  ADS  Google Scholar 

  47. C. Park and B. Ratra, “Using SPTpol, Planck 2015, and non-CMB data to constrain tilted spatially-flat and untilted non-flat \(\Lambda\) CDM, XCDM, and \(\phi\) CDM dark energy inflation cosmologies,” Phys. Rev. D 101, 083508 (2020).

    Article  ADS  Google Scholar 

  48. W. Handley “Primordial power spectra for curved inflating universes,” Phys. Rev. D 100, 123517 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  49. S. Castardelli dos Reis and I. L. Shapiro, “Cosmic anisotropy with reduced relativistic gas,” Eur. Phys. J. C 78, 145 (2018).

    Article  ADS  Google Scholar 

  50. G. Pordeus-da-Silva, R. Batista, and L. Medeiros, “Theoretical foundations of the reduced relativistic gas in the cosmological perturbed context,” JCAP 06, 043 (2019).

  51. N. R. Bertini, W. S. Hipólito-Ricaldi, F. de Melo-Santos, and D. C. Rodrigues, “Cosmological framework for renormalization group extended gravity at the action level,” Eur. Phys. J. C 80, 479 (2020).

    Article  ADS  Google Scholar 

  52. A. A. Starobinsky, “A new type of isotropic cosmological models without singularity,” Phys. Lett. B 91, 99 (1980).

    Article  ADS  MATH  Google Scholar 

  53. A. A. Starobinsky, “The perturbation spectrum evolving from a nonsingular initially de-Sitter cosmology and the microwave background anisotropy,” Sov. Astron. Lett. 9, 302 (1983).

    ADS  Google Scholar 

  54. E. V. Gorbar and I. L. Shapiro, “Renormalization group and decoupling in curved space,” JHEP 02, 021 (2003).

  55. E. Belgacem, Y. Dirian, S. Foffa, and M. Maggiore, “Nonlocal gravity. Conceptual aspects and cosmological predictions,” JCAP 1803, 002 (2018).

  56. R. Tripp, “A two-parameter luminosity correction for Type IA supernovae,” Astron. Astroph. 331, 815 (1998).

    ADS  Google Scholar 

  57. A. Conley et al., “Supernova constraints and systematic uncertainties from the first three years of the supernova legacy survey,” Astroph. J. Suppl. Series 192, 1 (2010).

    ADS  Google Scholar 

  58. R. Arjona, W. Cardona, and S. Nesseris, “Unraveling the effective fluid approach for f (R) models in the subhorizon approximation,” Phys. Rev. D 99 043516 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  59. A. M. Velasquez-Toribio, “Cosmological perturbations and the running cosmological constant model,” Int. Journ. Mod. Phys. D 21, 1250026 (2012).

    Article  ADS  MATH  Google Scholar 

  60. J. M. Bardeen et al., “The statistics of peaks of Gaussian random fields,” Astroph. J. 304, 15 (1986).

    Article  ADS  Google Scholar 

Download references

Funding

J.A. Agudelo Ruiz thanks CAPES for supporting his PhD project. J. C. Fabris thanks Fundaзão de Amparo á Pesquisa e Inovaзão do Espírito Santo (FAPES, project number 80598935/17) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, grant number 304521/2015-9) for partial support. This work of I.Sh. was partially supported by CNPq under the grant 303635/2018-5.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jhonny A. Agudelo Ruiz, Júlio C. Fabris, Alan M. Velasquez-Toribio or Ilya L. Shapiro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agudelo Ruiz, J.A., Fabris, J.C., Velasquez-Toribio, A.M. et al. Constraints from Observational Data for a Running Cosmological Constant and Warm Dark Matter with Curvature. Gravit. Cosmol. 26, 316–325 (2020). https://doi.org/10.1134/S0202289320040106

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289320040106

Navigation