Skip to main content
Log in

Modeling Hydrological Processes in Ungauged Snow-Fed Catchment of Western Himalaya

  • WATER RESOURCES AND THE REGIME OF WATER BODIES
  • Published:
Water Resources Aims and scope Submit manuscript

Abstract

Himalayan rivers originating generally from >4000 masl, sustain large number of population downstream. However, these river basins are highly data scarce, and in situ data for hydro-meteorological parameters is available mainly from the regions below 2000 masl. Considering the high level of human dependence on these rivers, it is important to develop policies and plans based on the hydrology of these rivers. Thus it is important to quantify the contribution of various runoff components like snow and ice melt, baseflow, etc. This paper has used conceptual hydrological model, HBV model to estimate the composition and contribution of various runoff components, for the Chenab river basin, Western Himalayas. Similar to hydrological modelling results for other basins of western Himalayas, this study shows that snow and ice melt contribution is significant in the basin and ranges between 40–66% of the total runoff in different seasons. During the post monsoon period, baseflow sustains the perennial nature of river. This research attempts to quantify the seasonal contributions to river runoff and provides valuable insights into hydrological processes operating in this high altitude hydrological catchment to facilitate improved management of water resources in the basin. The study further outlines the uncertainty in simulating low flows in ungauged catchments being fed by snow/ice melt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Aggarwal, S., Thakur, P., Nikam, B., and Garg, V., Integrated approach for snowmelt run-off estimation using temperature index model, remote sensing and GIS, Curr. Sci., 2014, vol. 106, pp. 397–407.

    Google Scholar 

  2. Akhtar, M., Ahmad, N., and Booij, M., The impact of climate change on the water resources of Hindukush–Karakorum–Himalaya Region under different glacier coverage scenarios, J. Hydrol., 2008, vol. 355, nos. 1–4, pp. 148–163. https://doi.org/10.1016/j.jhydrol.2008.03.015

    Article  Google Scholar 

  3. Alam, A., Sheikh, A.H., Bhat, S.A., and Shah, A.M., Remote Sensing: From Pixels to Processes, Proc. ISPRS Commission VII Sympos., Enschede, The Netherlands, 2006.

  4. Arora, M., Rathore, D.S., Singh, R.D., Kumar, R., and Kumar, A., Estimation of melt contribution to total streamflow in River Bhagirathi and River Dhauli Ganga at Loharinag Pala and Tapovan Vishnugad Project Sites, J. Water Resour. Prot., 2010, vol. 2, pp. 636–643. https://doi.org/10.4236/jwarp.2010.27073

    Article  Google Scholar 

  5. Beldring, S., Multi-criteria validation of precipitation-runoff model, J. Hydrol., 2002, vol. 257, nos. 1–4, pp. 189–211.

    Article  Google Scholar 

  6. Beldring, S., Engeland, K., Roald, L., Sælthun N., and Voksø, A., Estimation of parameters in a distributed precipitation-runoff model for Norway, Hydrol. Earth Syst. Sci., 2003, vol. 7, pp. 304–316. https://doi.org/10.5194/hess-7-304-2003

    Article  Google Scholar 

  7. Bergström, S., Experience from applications of the HBV hydrological model from the perspective of prediction in ungauged basins. Large Sample Basin Experiments for Hydrological Model Parameterization: Results of the Model Parameter Experiment–MOPEX, IAHS Publ., 2006, 307.

    Google Scholar 

  8. Bergström, S., The HBV Model–Its Structure and Applications, Rep. 04, Swedish Meteorol. Hydrol. Inst., 1992.

  9. Bhattarai, S., Zhou, Y., Shakya, N.M., and Zhao, C., Hydrological modeling and climate change impact assessment using HBV Light Model: a case study of Narayani River Basin, Nepal, Nature Environ. Pollution Technol., 2017, vol. 17, no. 3, pp. 691–702.

    Google Scholar 

  10. Bookhagen, B. and Burbank, D., Toward a complete Himalayan hydrological budget: Spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge, J. Geophys. Res., 2010, vol. 115, F03019. https://doi.org/10.1029/2009JF001426

  11. Fontaine, T.A., Cruickshank, T.S., Arnold, J.G., and Hotchkiss, R.H., Development of a snowfall-snowmelt routine for mountainous terrain for the soil water assessment tool (SWAT), J. Hydrol., 2002, vol. 262, pp. 209–223. https://doi.org/10.1016/S0022-1694(02)00029-X

    Article  Google Scholar 

  12. Huss, M. and Farinotti, D., Distributed ice thickness and volume of all glaciers around the globe, J. Geophys. Res., 2012, vol. 117, F04010. https://doi.org/10.1029/2012JF002523

    Article  Google Scholar 

  13. Immerzeel, W.W., van Beek, L.P.H., and Bierkens, M.F., Climate change will affect the Asian water towers, Sci., 2010, vol. 328, no. 5984, pp. 1382–1385. https://doi.org/10.1126/science.1183188

    Article  Google Scholar 

  14. Immerzeel, W.W., van Beek, L.P.H., Konz, M., Shrestha A., and Bierkens, M.F.P., Hydrological response to climate change in a glacierized catchment in the Himalayas, Clim. Change, 2012, vol. 110, pp. 721–736. https://doi.org/10.1007/s10584-011-0143-4

    Article  Google Scholar 

  15. Jain, S.K., Goswami, A., and Saraf, A.K., Role of elevation and aspect in snow distribution in Western Himalaya, Water Resour. Manage., 2009, vol. 23, pp. 71–83. https://doi.org/10.1007/s11269-008-9265-5

    Article  Google Scholar 

  16. Jain, S.K., Jain, S.K., Jain, N., and Xu, C.Y., Hydrologic modeling of a Himalayan mountain basin by using the SWAT mode, Hydrol. Earth Syst. Sci., 2017, pp. 1–26. https://doi.org/10.5194/hess-2017-100

  17. Jain, S.K., Tyagi, J., and Singh, V., Simulation of runoff and sediment yield for a Himalayan watershed using SWAT model, J. Water Resour. Prot., 2010, vol. 2, pp. 267–281. https://doi.org/10.4236/jwarp.2010.23031

    Article  Google Scholar 

  18. Jeelani, G., Feddema, J.J., Van der Veen C.J., and Stearns, L., Role of snow and glacier melt in controlling river hydrology in Liddar watershed (western Himalaya) under current and future climate, Water Resour. Res., 2012, vol. 48. 12508.https://doi.org/10.1029/2011WR011590

  19. Khan, A.A., Chandra Pant, N., Sarkar, A., Tandon, S.K., Thamban, M., and Mahalinganathan, K., The Himalayan cryosphere: A critical assessment and evaluation of glacial melt fraction in the Bhagirathi basin, Geosci. Front., 2017, vol. 8, pp. 107–115. https://doi.org/10.1016/j.gsf.2015.12.009

    Article  Google Scholar 

  20. Kour R., Patel N., and Krishna A.P., Assessment of temporal dynamics of snow cover and its validation with hydro-meteorological data in parts of Chenab Basin, western Himalayas, Sci. China: Earth Sci., 2016, vol. 59, pp. 1081–1094. https://doi.org/10.1007/s11430-015-5243-y

    Article  Google Scholar 

  21. Kumar, R., Singh S., Kumar R., Singh A., Bhardwaj A., Sam L., Randhawa, S.S., and Gupta, A., development of a glacio-hydrological model for discharge and mass balance reconstruction, Water Resour. Manage., 2016, vol. 30, no. 10, pp. 3475–3492. https://doi.org/10.1007/s11269-016-1364-0

    Article  Google Scholar 

  22. Li, H., Beldring, S., and Xu, C.-Y., Implementation and testing of routing algorithms in the distributed Hydrologiska Byrans Vattenbalansavdelning model for mountainous catchments, Hydrol. Res., 2014, no. 45, pp. 322–333. https://doi.org/10.2166/nh.2013.009

  23. Li, H., Beldring, S., and Jain, S., Modelling runoff and its components in Himalayan basins. Conf. Hydrology in a Changing World: Environmental and Human Dimensions, At Montpellier, France, 2014.

    Google Scholar 

  24. Lindstrőm, G., Johansson, B., Persson, M., Gardelin, M., and Bergström, S., Development and test of the distributed HBV-96 hydrological model, J. Hydrol., 1997, vol. 201, pp. 272–288.

    Article  Google Scholar 

  25. Lutz, A., Immerzeel, W.W., Shrestha, A., and Bierkens, M.F.P., Consistent increase in High Asia’s runoff due to increasing glacier melt and precipitation, Nat. Clim. Change, 2014, vol. 4, pp. 587–592. https://doi.org/10.1038/nclimate2237

    Article  Google Scholar 

  26. Nash, J.E. and Sutcliffe, J.V., River flow forecasting through conceptual models. Part I – A discussion of principles, J. Hydrol., 1970, vol. 10, no. 3, pp. 282–290. https://doi.org/10.1016/0022-1694(70)90255-6

    Article  Google Scholar 

  27. Nepal, S., Impacts of climate change on the hydrological regime of the Koshi river basin in the Himalayan region, J. Hydro-Environ. Res., 2016, vol. 10, pp. 76–89.

    Google Scholar 

  28. Panday, P.K., Williams, C.A., Frey, K.E., and Brown M.E., Application and evaluation of a snowmelt runoff model in the Tamor River basin, Eastern Himalaya using a Markov Chain Monte Carlo (MCMC) data assimilation approach, Hydrol. Processes, 2014, vol. 28, pp. 5337–5353. https://doi.org/10.1002/hyp.10005

    Article  Google Scholar 

  29. Prasad, V.H. and Roy, P.S, Estimation of snowmelt runoff in Beas Basin, India, Geocarto Int., 2005, vol. 20, pp. 41–47. https://doi.org/10.1080/10106040508542344

    Article  Google Scholar 

  30. Rahman, K., Maringanti, C., Beniston, M., Widmer, F., Abbaspour, K., and Lehmann, A., Streamflow modeling in a highly managed mountainous glacier watershed using SWAT: The Upper Rhone River watershed case in Switzerland, Water Resour. Manage., 2012, vol. 27, no. 2, pp. 323–339. https://doi.org/10.1007/s11269-012-0188-9

    Article  Google Scholar 

  31. Rajeevan, M., Bhate, J., Kale, J., and Lal, B., High resolution daily gridded rainfall data for the Indian region: Analysis of break and active monsoon spells, Curr. Sci. India, 2006, vol. 91, no. 3, pp. 296–306.

    Google Scholar 

  32. Siderius, C., Biemans, H., Wiltshire, A., Rao, S., Franssen, W.H.P., Kumar, P., Gosain, A. K., van Vliet, M.T.H., and Collins, D.N., Snowmelt contributions to discharge of the Ganges, Sci. Total Environ., 2013, pp. 468–469, S93-S101. https://doi.org/10.1016/j.scitotenv.2013.05.084

  33. Singh, P., Haritashya, U. K., and Kumar, N., Modelling and estimation of different components of streamflow for Gangotri Glacier basin, Hydrol. Sci. J., 2008, vol. 48, pp. 257–276. https://doi.org/10.1623/hysj.53.2.309

    Article  Google Scholar 

  34. Singh, P., Jain, S.K., and Kumar, N., Estimation of snow and glacier-melt contribution to the Chenab River, Western Himalaya, Mount. Res. Develop., 1997, vol. 17, pp. 49–56. https://doi.org/10.2307/3673913

    Article  Google Scholar 

  35. Vörösmarty, C.J., Fekete, B.M., and Tucker, B.A., Monthly mean river discharge at gauging station Akhnoor, PANGAEA, 2004. https://doi.org/10.1594/PANGAEA.218300

  36. Williams, R.S.Jr., Ferrigno, J.G., Eds., Glaciers of Asia, U.S. Geological Survey Professional Paper, 2010, 1386–F, 349 p.

  37. Xu, M., Han, H., and Kang, S., Modeling glacier mass balance and runoff in the Koxkar River Basin on the south slope of the Tianshan Mountains, China, from 1959 to 2009, Water, 2017, vol. 9, no. 2, 100. https://doi.org/10.3390/w9010100

    Article  Google Scholar 

  38. Xuan, W., Fu, Q., Qin, G., Zhu, C., Pan, S., and Xu, Y.-P., Hydrological simulation and runoff component analysis over a cold mountainous river basin in Southwest China, Water, 2018, vol. 10, 1705. https://doi.org/10.3390/w10111705

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sonia Grover or Shresth Tayal.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sonia Grover, Tayal, S., Beldring, S. et al. Modeling Hydrological Processes in Ungauged Snow-Fed Catchment of Western Himalaya. Water Resour 47, 987–995 (2020). https://doi.org/10.1134/S0097807820060147

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0097807820060147

Keywords:

Navigation