Skip to main content
Log in

A new class of spherically symmetric gravitational collapse

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We discuss the gravitational collapse of a spherically symmetric perfect fluid distribution of uniformly contracting stars. In a uniformly contracting star, the relative volume element (relative distance in the case of spherical symmetry) between any two neighboring fluid particles is preserved irrespective of the radial coordinate. The physical meaning is that during collapse each small volume element of the fluid distribution preserves its spatial position. This new class of gravitational collapse is analogous to the reverse phenomenon of motion of galaxies during the expansion of the Universe. We discuss the shearing solution of a perfect fluid distribution executing the uniform expansion, which is a scalar and obeys the equation of state \(p=p(\rho)\). The field equation is solved in complete generality, such that that the Oppenheimer–Snyder solution with homogeneous density and the Thompson–Whitrow shear-free solution arise as particular cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. C. McVittie, “Gravitational motions of collapse or of expansion in general relativity,” Ann. Inst. H. Poincaré Sect. A (N. S.), 6, 1–15 (1967).

    Google Scholar 

  2. A. H. Taub, “Restricted motions of gravitating spheres,” Ann. Inst. H. Poincaré Sect. A (N. S.), 9, 153–178 (1968).

    ADS  MathSciNet  Google Scholar 

  3. M. C. Faulkes, “Non-static fluid spheres in general relativity,” Prog. Theor. Phys., 42, 1139–1142 (1969).

    Article  ADS  MathSciNet  Google Scholar 

  4. E. N. Glass and B. Mashhoon, “On a spherical star system with a collapsed core,” Astrophys. J., 205, 570–577 (1976).

    Article  ADS  Google Scholar 

  5. J. R. Oppenheimer and H. Snyder, “On continued gravitational contraction,” Phys. Rev., 56, 455–459 (1939).

    Article  ADS  MathSciNet  Google Scholar 

  6. G. C. McVittie, “The mass-particle in an expanding universe,” Mon. Not. R. Astron. Soc., 93, 325–339 (1933).

    Article  ADS  Google Scholar 

  7. B. Nolan, “Sources for McVittie’s mass particle in an expanding universe,” J. Math. Phys., 34, 178–185 (1933).

    Article  ADS  MathSciNet  Google Scholar 

  8. A. Ori and T. Piran, “Naked singularities and other features of self-similar general-relativistic gravitational collapse,” Phys. Rev. D, 42, 1068–1090 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  9. P. S. Joshi, N. Dadhich, and R. Maartens, “Why do naked singularities form in gravitational collapse?,” Phys. Rev. D, 65, 101501, 4 pp. (2002); arXiv: gr-qc/0109051.

    Article  ADS  MathSciNet  Google Scholar 

  10. W. B. Bonnor and M. C. Faulkes, “Exact solutions for oscillating spheres in general relativity,” Mon. Not. R. Astron. Soc., 137, 239–251 (1967).

    Article  ADS  Google Scholar 

  11. H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers, and E. Herlt, Exact Solutions of Einstein’s Field Equations, Cambridge Univ. Press, Cambridge (2003).

    Book  Google Scholar 

  12. H. Nariai, “A simple model for gravitational collapse with pressure gradient,” Prog. Theor. Phys., 38, 92–106 (1967).

    Article  ADS  Google Scholar 

  13. V. Husain, E. A. Martinez, and D. Núñez, “Exact solution for scalar field collapse,” Phys. Rev. D, 50, 3783–3786 (1994); arXiv: gr-qc/9402021.

    Article  ADS  MathSciNet  Google Scholar 

  14. C. B. Collins and J. Wainwright, “Role of shear in general-relativistic cosmological and stellar models,” Phys. Rev. D, 27, 1209–1218 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  15. E. N. Glass, “Shear-free gravitational collapse,” J. Math. Phys., 20, 1508–1513 (1979).

    Article  ADS  Google Scholar 

  16. R. Chan, “Collapse of a radiating star with shear,” Mon. Not. R. Astron. Soc., 288, 589–595 (1997); “Erratum: Collapse of a radiating star with shear,” 299, 811–811 (1998).

    Article  ADS  Google Scholar 

  17. L. Herrera and N. O. Santos, “Shear-free and homology conditions for self-gravitating dissipative fluids,” Mon. Not. R. Astron. Soc., 343, 1207–1212 (2003).

    Article  ADS  Google Scholar 

  18. C. W. Misner and D. H. Sharp, “Relativistic equations for adiabatic, spherically symmetric gravitational collapse,” Phys. Rev. D, 136, B571–B576 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  19. I. H. Thompson and G. J. Whitrow, “Time-dependent internal solutions for spherically symmetrical bodies in general relativity: I. Adiabatic collapse,” Mon. Not. R. Astron. Soc., 136, 207–217 (1967).

    Article  ADS  Google Scholar 

  20. M. Wyman, “Equations of state for radially symmetric distributions of matter,” Phys. Rev. D, 70, 396–400 (1946).

    Article  ADS  Google Scholar 

  21. B. Mashhoon and M. Hossein Partovi, “On the gravitational motion of a fluid obeying an equation of state,” Ann. Phys., 130, 99–138 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  22. J. V. Narlikar, An Introduction to Cosmology, Cambridge Univ. Press, Cambridge (2002).

    Google Scholar 

  23. L. Herrera, N. O. Santos, and A. Wang, “Shearing expansion-free spherical anisotropic fluid evolution,” Phys. Rev. D, 78, 084026, 10 pp. (2008); arXiv: 0810.1083.

    Article  ADS  Google Scholar 

  24. V. A. Skripkin, “A point discontinuity in a perfect incompressible fluid in the general theory of relativity,” Sov. Phys. Dokl., 5, 1183–1186 (1961).

    ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the referee for the valuable suggestions and comments to improve the manuscript.

Funding

R. Kumar is thankful to an UGC-BSR Startup grant, India, for financial assistance. A. Jaiswal is thankful to the Council of Science and Technology, UP, India (vide letter no. CST/D-2289).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Kumar.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, 2022, Vol. 211, pp. 136–146 https://doi.org/10.4213/tmf10225.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Jaiswal, A. A new class of spherically symmetric gravitational collapse. Theor Math Phys 211, 558–566 (2022). https://doi.org/10.1134/S0040577922040092

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577922040092

Keywords

Navigation