Skip to main content
Log in

Spectral Signs of Simultaneous Sublimation Activity and the Appearance of a Dust Exosphere on Eight Asteroids of the Main Belt Near Perihelion

  • Published:
Solar System Research Aims and scope Submit manuscript

Abstract—

In December 2020, at the 2-m telescope of the Terskol branch of the Institute of Astronomy, we carried out spectrophotometric observations in the range of ~0.36–0.95 μm of nine asteroids of the Main Belt (19 Fortuna, 52 Europa, 102 Miriam, 177 Irma, 203 Pompeja, 250 Bettina, 266 Aline, 379 Huenna, and 383 Janina), which were near perihelia of their orbits with significant eccentricities, in order to determine the effect of maximum subsolar temperatures on them. The study of the reflecance spectra of asteroids showed that the mineralogy of their matter is low-temperature and basically corresponds to the previously established classification (Tholen, 1989; Bus and Binzel, 2002). But in the spectra of eight asteroids (with the exception of 102 Miriam), for the first time, significant deviations were found that go beyond the spectral boundaries of their taxonomic types in the absence of noticeable changes in the spectral transparency of the Earth’s atmosphere at time intervals shorter and longer than the exposure time. Such features can be interpreted as light scattering by a mobile (or inhomogeneous) dusty exosphere that forms near these asteroids near perihelion in the process of ice sublimation at the highest subsolar temperatures. In addition, as follows from the data obtained from the GOES-16 and SOHO satellites, the considered asteroids at the end of November 2020 (10 days before the start of our observations) were affected by a strong solar flare in the X-ray range, and then by a shock wave in solar wind caused by a coronal mass ejection on the Sun, which was quasi-synchronous with the X-ray flare. This probably led to an additional increase in the sublimation activity of the asteroids and manifestations of a derivative dusty exosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Bakhtin, A.I., Porodoobrazuyushchie silikaty: opticheskie spektry, kristallokhimiya, zakonomernosti okraski, tipomorfizm (Rock-Forming Silicates: Optical Spectra, Crystal Chemistry, Color Patterns, Typomorphism), Kazan: Izd. Kazan. Univ., 1985.

  2. Belskaya, I.N. and Lagerkvist, C.I., Physical properties of M class asteroids, Planet. Space Sci., 1996, vol. 44, no. 8, pp. 783–794.

    Article  ADS  Google Scholar 

  3. Borovsky, J.E., What magnetospheric and ionospheric researchers should know about the solar wind, J. Atmos. Sol.-Terr. Phys., 2020, vol. 204, id. 105271.

  4. Burns, R.G., Mineralogical Applications of Crystal Field Theory, New York: Cambridge Univ. Press, 1993.

    Book  Google Scholar 

  5. Bus, S.J. and Binzel, R.P., Phase II of the small main-belt asteroid spectroscopic survey. A feature-based taxonomy, Icarus, 2002, vol. 158, no. 1, pp. 146–177.

    Article  ADS  Google Scholar 

  6. Busarev, V.V., Spectrophotometry of atmosphereless celestial bodies of the solar system, Sol. Syst. Res., 1999, vol. 33, no. 2, pp. 120–129.

    ADS  Google Scholar 

  7. Busarev, V.V., Hydrated silicates on asteroids of M-, S-, and E- types as possible traces of collisions with bodies of the Jupiter growth zone, Sol. Syst. Res., 2002, vol. 36, no. 1, pp. 39–47.

    Article  ADS  Google Scholar 

  8. Busarev, V.V., A hypothesis on the origin of C-type asteroids and carbonaceous chondrites, Asteroids, Comets, Meteors (ACM), Niigata, Japan, 2012, abs. no. 6017. https://arxiv.org/ftp/arxiv/papers/1211/1211.3042.pdf

  9. Busarev, V.V., New reflectance spectra of 40 asteroids: A comparison with previous results and interpretation, Sol. Syst. Res., 2016, vol. 50, no. 1, pp. 13–23.

    Article  ADS  Google Scholar 

  10. Busarev, V.V., Barabanov, S.I., Rusakov, V.S., Puzin, V.B., and Kravtsov, V.V., Spectrophotometry of (32) Pomona, (145) Adeona, (704) Interamnia, (779) Nina, (330825) 2008 XE3, and 2012 QG42 and laboratory study of possible analog samples, Icarus, 2015, vol. 262, pp. 44–57.

    Article  ADS  Google Scholar 

  11. Busarev, V.V., Barabanov, S.I., and Puzin, V.B., Material composition assessment and discovering sublimation activity on asteroids 145 Adeona, 704 Interamnia, 779 Nina, and 1474 Beira, Sol. Syst. Res., 2016, vol. 50, no. 4, pp. 281–293.

    Article  ADS  Google Scholar 

  12. Busarev, V.V., Makalkin, A.B., Vilas, F., Barabanov, S.I., and Scherbina, M.P., New candidates for active asteroids: main-belt (145) Adeona, (704) Interamnia, (779) Nina, (1474) Beira, and near-Earth (162173) Ryugu, Icarus, 2018, vol. 304, pp. 83–94.

    Article  ADS  Google Scholar 

  13. Busarev, V.V., Shcherbina, M.P., Barabanov, S.I., Irsmambetova, T.R., Kokhirova, G.I., Khamroev, U.Kh., Khamitov, I.M., Bikmaev, I.F., Gumerov, R.I., Irtuganov, E.N., and Mel’nikov, S.S., Confirmation of the sublimation activity of the primitive Main-Belt asteroids 779 Nina, 704 Interamnia, and 145 Adeona, as well as its probable spectral signs on 51 Nemausa and 65 Cybele, Sol. Syst. Res., 2019, vol. 53, no. 4, pp. 261–277.

    Article  ADS  Google Scholar 

  14. Busarev, V.V., Petrova, E.V., Irsmambetova, T.R., Shcherbina, M.P., and Barabanov, S.I., Simultaneous sublimation activity of primitive asteroids including (24) Themis and (449) Hamburga: Spectral signs of an exosphere and the solar activity impact, Icarus, 2021, vol. 369, id. 114634.

  15. Chandler, C.O., Curtis, A.M., Mommert, M., Sheppard, S.S., and Trujillo, C.A., SAFARI: Searching Asteroids for Activity Revealing Indicators, Publ. Astron. Soc. Pacif., 2018, vol. 130, no. 993, id. 114502.

  16. Clement, M.S., Raymond, S.N., and Kaib, N.A., Excitation and depletion of the asteroid belt in the early instability scenario, Astron. J., 2019, vol. 157, no. 1, p. 38.

    Article  ADS  Google Scholar 

  17. Cloutis, E.A., Hiroi, T., Gaffey, M.J., Alexander, C.M.O’D., and Mann, P., Spectral reflectance properties of carbonaceous chondrites: 1. CI chondrites, Icarus, 2011a, vol. 212, pp. 180–209.

    Article  ADS  Google Scholar 

  18. Cloutis, E.A., Hudon, P., Hiroi, T., Gaffey, M.J., and Mann, P., Spectral reflectance properties of carbonaceous chondrites: 2. CM chondrites, Icarus, 2011b, vol. 216, pp. 309–349.

    Article  ADS  Google Scholar 

  19. von Forstner, J.L.F., Guo, J., Wimmer-Schweingruber, R.F., Hassler, D.M., Temmer, M., Dumbovic, M., Jian, L.K., Appel, J.K., Calogovic, J., Ehresmann, B., Heber, B., Lohf, H., Posner, A., Steigies, C.T., Vršnak, B., and Zeitlin, C.J., Using Forbush decreases to derive the transit time of ICMEs propagating from 1 AU to Mars, J. Geophys. Res.: Space Phys., 2018, vol. 123, pp. 39–56.

    Article  ADS  Google Scholar 

  20. Fulle, M., Levasseur-Regourd, A.C., McBride, N., and Hadamcik, E., In-situ dust measurements from within the coma of 1P/Halley: First-order approximation with a dust dynamical model, Astron. J., 2000, vol. 119, p. 1968–1977.

    Article  ADS  Google Scholar 

  21. Gaffey, M.J., Bell, J.F., and Cruikshank, D.P., Reflectance spectroscopy and asteroid surface mineralogy, in Asteroids II, Binzel, R.P., Gehrels, T., and Mattews, M.S, Eds., Tucson: Univ. Arizona Press, 1989, pp. 98–127.

    Google Scholar 

  22. Gaffey, M.J., Cloutis, E.A., Kelley, M.S., and Reed, K.L., Mineralogy of asteroids, in Asteroids III, Bottke, W.F., Jr., Eds., Tucson: Univ. Arizona Press, 2002, pp. 183–204.

    Google Scholar 

  23. Galazutdinov, G.A., System for processing stellar echelle spectra. II. Spectrum processing, Preprint of Special Astrophysical Observatory, 1992, no. 92, pp. 27–52.

  24. Gou, T., Liu, R., Kliem, B., Wang, Y., and Veronig, A.M., The birth of a coronal mass ejection, Sci. Adv., 2019, vol. 5, id. eaau7004.

  25. Güttler, C., Mannel, T., Rotundi, A., Merouane, S., Fulle, M., Bockelée-Morvan, D., Lasue, J., Levasseur-Regourd, A.C., Blum, J., Naletto, G., Sierks, H., Hilchenbach, M., Tubiana, C., Capaccioni, F., Paquette, J.A., Flandes, A., Moreno, F., Agarwal, J., Bodewits, D., Bertini, I., Tozzi, G.P., Hornung, K., Langevin, Y., Kruger, H., Longobardo, A., Della Corte, V., Tóth, I., Filacchione, G., Ivanovski, S.L., Mottola, S., and Rinaldi, G., Synthesis of the morphological description of cometary dust at comet 67P/Churyumov–Gerasimenko, Astron. Astrophys., 2019, vol. 630, id. A24.

  26. Hiroi, T., Vilas, F., and Sunshine, J.M., Discovery and analysis of minor absorption bands in S-asteroid visible reflectance spectra, Icarus, 1996, vol. 119, pp. 202–208.

    Article  ADS  Google Scholar 

  27. Hundhausen, J., Burkepile, J.T., and St. Cyr, O.C., Speeds of coronal mass ejections: SMM observations from 1980 and 1984–1989, J. Geophys. Res.: Atmos., 1994, vol. 99, pp. 6543–6552.

    Article  ADS  Google Scholar 

  28. Jewitt, D., The active asteroids, Astron. J., 2012, vol. 143, no. 3, id. 66.

  29. Küppers, M., O’Rourke, L., Bockelée-Morvan, D., Zakharov, V., Lee, S., von Allmen, P., Carry, B., Teyssier, D., Marston, A., Müller, T., Crovisier, J., Barucci, M.A., and Moreno, R., Localized sources of water vapour on the dwarf planet (1) Ceres, Nature, 2014, vol. 505, pp. 525–527.

    Article  ADS  Google Scholar 

  30. Kurucz, R.L., New atlases for solar flux, irradiance, central intensity, and limb intensity, Mem. Soc. Astron. Ital. Suppl., vol. 8, no. 2005, pp. 189–191.

  31. Lee, P., Dust levitation on asteroids, Icarus, 1996, vol. 124, pp. 181–194.

    Article  ADS  Google Scholar 

  32. Meech, K.J. and Belton, M.J.S., The atmosphere of 2060 Chiron, Astron. J., 1990, vol. 100, pp. 1323–1393.

    Article  ADS  Google Scholar 

  33. Merline, W.J., Drummond, J.D., Carry, B., Conrad, A., Tamblyn, P.M., Dumas, C., Kaasalainen, M., Erikson, A., Mottola, S., Durech, J., Rousseau, G., Behrend, R., Casalnuovo, G.B., Chinaglia, B., Christou, J.C., Chapman, C.R., and Neyman, C., The resolved asteroid program—size, shape, and pole of (52) Europa, Icarus, 2013, vol. 225, pp. 794–905.

    Article  ADS  Google Scholar 

  34. Petrova, E.V., Jockers, K., and Kiselev, N.N., Light scattering by aggregates with sizes comparable to the wavelength: An application to cometary dust, Icarus, 2000, vol. 148, pp. 526–536.

    Article  ADS  Google Scholar 

  35. Platonov, A.N., Priroda okraski mineralov (The Nature of the Color of Minerals), Kiev: Naukova dumka, 1976.

  36. Rivkin, A.S., Howell, E.S., Lebofsky, L.A., Clark, B.E., and Britt, D.T., The nature of M-class asteroids from 3-µm observations, Icarus, 2000, vol. 145, pp. 351–368.

    Article  ADS  Google Scholar 

  37. Rossman, G.R., Spectroscopic and magnetic study of ferric iron hydroxy sulfates: Intensification of color in ferric iron clusters bridged by a single hydroxide ion, Am. Miner., 1975, vol. 60, pp. 698–704.

    Google Scholar 

  38. Schorghofer, N., The lifetime of ice on main belt asteroids, Astrophys. J., 2008, vol. 682, pp. 697–705.

    Article  ADS  Google Scholar 

  39. Sherman, D.M., The electronic structure of Fe3+ coordination sites in iron oxides: Application to spectra, bonding and magnetism, Phys. Chem. Miner., 1985, vol. 12, pp. 161–175.

    Article  ADS  Google Scholar 

  40. Tholen, D.J., Asteroid taxonomic classifications, in Asteroids II, Binzel, R.P., Gehrels, T., and Mattews, M.S., Eds., Tucson: Univ. Arizona Press, 1989, pp. 1139–1150.

    Google Scholar 

  41. Tholen, D.J. and Barucci, M.A., Asteroid taxonomy, in Asteroids II, Binzel, R.P., Gehrels, T., and Mattews, M.S., Eds., Tucson: Univ. Arizona Press, 1989, pp. 298–315.

    Google Scholar 

  42. Wagner, J.K., Hapke, B.W., and Wells, E.N., Atlas of reflectance spectra of terrestrial, lunar, and meteoritic powders and frosts from 92 to 1800 nm, Icarus, 1987, vol. 69, pp. 14–28.

    Article  ADS  Google Scholar 

  43. Walker, G., Astronomical Observations, Cambridge: Cambridge Univ. Press, 1987.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to A.V. Zakharov and an anonymous reviewer for careful reading of the manuscript and useful recommendations, which made it possible to significantly improve the description of the results presented in the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Busarev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Busarev, V.V., Savelova, A.A., Shcherbina, M.P. et al. Spectral Signs of Simultaneous Sublimation Activity and the Appearance of a Dust Exosphere on Eight Asteroids of the Main Belt Near Perihelion. Sol Syst Res 56, 84–99 (2022). https://doi.org/10.1134/S0038094622020022

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0038094622020022

Keywords:

Navigation