Skip to main content
Log in

Analysis of Key Technologies for a Space Geophysics Mission: Required Accuracies and Engineering Solutions

  • Published:
Solar System Research Aims and scope Submit manuscript

Abstract—The paper analyzes the Russian scientific and technological capabilities to manufacture a space-borne observation platform for high-precision monitoring of the Earth’s gravitational field. It is shown that some Russian space systems manufacturing technologies may well be used for this purpose; however, in general, the level of the domestic technologies must be substantially improved so as to meet stringent requirements of such a project. Nevertheless, it can be confidently stated that it is quite feasible to carry out this project using Russian technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Albertella, A., Migliaccio, F., and Sanso, F., GOCE: The Earth gravity field by space gradiometry, Celest. Mech. Dyn. Astron., 2002, no. 83, pp. 1–15. https://doi.org/10.1023/A:1020104624752

  2. AO Morion. http://www.morion.com.ru/rus/. Accessed April 1, 2019.

  3. AO Morion. Rubidium Generators. http://www.morion.com.ru/rus/rb/. Accessed April 1, 2019.

  4. Auger, G., et al., LISA-like laser ranging for GRACE Follow-On, 59th LISA Symposium, ASP Conference Series, Paris, 2012, vol. 467.

  5. Bai, Y., et al., Research and development of electrostatic accelerometers for space science missions at HUST, Sensors, 2017, no. 17, pp. 19–43. https://doi.org/10.3390/s17091943

  6. Demidov, N.A., Belyaev, A.A., Sakharov, B.A., Prospective onboard hydrogen frequency standard for space applications, in VIII International Symposium Metrology of Time and Space, St. Petersburg, 2016, p. 41.

  7. Gerhard., H., Satellite interferometry from LTP and GRACE Follow-On to LISA, LISA Symposium, Zürich, 2016. https://pdfs.semanticscholar.org/presentation/df7e/ece0df094cdb3c5b9bcfd370942709fffc0e.pdf. Accessed April 1, 2019.

  8. Gerhard, H., et al., Laser ranging interferometer for GRACE Follow-On, J. Phys. Conf. Ser., 2015, vol. 610, no. 1. https://doi.org/10.1117/12.2309099

  9. Gerhard, H., et al., Laser ranging interferometer for GRACE Follow-On, Proc. SPIE 10564, International Conference on Space Optics, 2017, vol. 1056420. https://doi.org/10.1117/12.2309099

  10. Laser Interferometer Space Antenna (LISA) Measurement Requirements Flowdown Guide. LISA Project internal report number LISA-MSE-TN-0001, Washington, DC: Natl. Aeronaut. Space Admin., 2009.

  11. Lavochkin Association. Fregat Multipurpose Booster. http://www.laspace.ru/company/products/launchvehicles/fregat/. Accessed April 1, 2019.

  12. Luo, J., et al. TianQin: A space-borne gravitational wave detector, Class. Quantum Grav., 2016, vol. 33, no. 3, art. ID 035010. https://doi.org/10.1088/02649381/33/3/035010

    Article  ADS  Google Scholar 

  13. Miniature precision low-noise quartz generator GK333M-TS. http://www.morion.com.ru/catalog_pdf/NEW-ГK333M_BEP_1.pdf. Accessed April 1, 2019.

  14. MOKB Mars. http://www.mars-mokb.ru/index.html. Accessed April 1, 2019.

  15. NPP Geofizika Cosmos. http://www.geofizika-cosmos.ru/. Accessed April 1, 2019.

  16. OOO Azmerit. http://www.azmerit.ru. Accessed April 1, 2019.

  17. OOO Gaskol. http://www.gaskol.ru. Accessed April 1, 2019.

  18. Reigber, C., et al., An Earth gravity field model complete to degree and order 150 from GRACE: EIGENGRACE02S, J. Geodyn., 2005, no. 39, pp. 1–10.

  19. Reigber, C., Luehr, H., and Schwintzer, P., CHAMP mission status, J. Adv. Space Res., 2002, vol. 30, no. 2, pp. 129–134.

    Article  ADS  Google Scholar 

  20. Roscosmos. Soyuz-2 Launch Vehicle. http://www.roscosmos.ru/468/. Accessed April 1, 2019. Schütze, D., GRACE Follow-On laser ranging interferometer, Quantum to Cosmos 5, Cologne, Germany, 2012. http://www.zarm.unibremen.de/Q2C5/pdf/presentations/Schuetze_GRACE.pdf. Accessed April 1, 2019.

  21. Sutton, A., DI ranging for the GRACEFO laser ranging interferometer. Jet Propulsion Laboratory, California Institute of Technology. http://www.physics.ufl.edu/ lisasymposiumx/resources/contributions/Th4b_2_Sutton.pdf. Accessed April 1, 2019.

  22. Tapley, B.D., Bettadpur, S., Watkins, M.M., and Reigber, Ch., The gravity recovery and climate mission overview and early results, Geophys. Rev. Lett., 2004, vol. 31, no. 9, id. L09607. https://doi.org/10.1029/2004GL019920

  23. Touboul, P., Willemenot, E., Foulon, B., and Josselin, V., Accelerometers for CHAMP, GRACE and GOCE space missions: Synergy and evolution, Boll. Geofis. Teor. Appl., 1999, nos. 3–4, pp. 321–327.

  24. Unified Procurement Information System. http://www. zakupki.gov.ru/epz/order/notice/ok44/view/documents.html?regNumber = 0995000000216000045. Accessed April 1, 2019.

  25. Vasil’ev, V.P. and Shargorodskii, V.D., The current state of high-precision satellite laser ranging in Russia, Fotonika, 2017, no. 6, pp. 74–85.

  26. Zuber, M.T., Smith, D.E., Watkins, M.M., et al., Gravity field of the Moon from the Gravity Recovery And Interior Laboratory (GRAIL) mission, Science, 2013, pp. 668–671. https://doi.org/10.1126/science.1231507

Download references

Funding

This work was performed under government contract no. 851-0323/16/258, November 28, 2016, between the Roskosmos State Corporation and TsNIImash, supported by the Russian Foundation for Basic Research, grant no. 19-29-11008).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. K. Milyukov, A. V. Burdanov, A. S. Zhamkov, V. E. Zharov, O. A. Ivlev, I. M. Nesterin or V. K. Sysoev.

Additional information

Translated by B. Shubik

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milyukov, V.K., Burdanov, A.V., Zhamkov, A.S. et al. Analysis of Key Technologies for a Space Geophysics Mission: Required Accuracies and Engineering Solutions. Sol Syst Res 54, 610–620 (2020). https://doi.org/10.1134/S003809462007014X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003809462007014X

Keywords:

Navigation