Skip to main content
Log in

Formulas for Calculating the \( 3j \)-Symbols of the Representations of the Lie Algebra \( {\mathfrak{gl}}_{3} \) for the Gelfand–Tsetlin Bases

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

We give a simple explicit formula for an arbitrary \( 3j \)-symbol for the Lie algebra \( {\mathfrak{gl}}_{3} \). The symbol is expressed as the ratio of values of hypergeometric functions with \( \pm 1 \) substituted for all arguments. Finding a \( 3j \)-symbol is essentially equivalent to the determination of an arbitrary Clebsch–Gordan coefficient for \( {\mathfrak{gl}}_{3} \). The coefficients are important in the quark theory of quantum mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The accurate definition of \( s \) is as follows: Write the decomposition as \( V\otimes W=\sum\nolimits_{U}M_{U}\otimes U \), where \( M_{U} \) is some vector space called the multiplicity space. If \( \{e_{i}\} \) is a basis for \( M_{U} \) then \( U^{s}:=e_{s}\otimes U \).

  2. The support \( \operatorname{supp}F \) of a function expressed as the sum of a power series is the set of exponent vectors in the series of monomials.

  3. Below we will consider only the representations with \( m_{3}=0 \) and \( m^{\prime}_{3}=0 \).

  4. Note the articles [18,19,20] which use a similar approach to decomposing the double tensor product.

References

  1. Biedenharn L. C. and Louck J. D., Angular Momentum in Quantum Mechanics, Addison-Wesley, Reading (1981).

    MATH  Google Scholar 

  2. Greiner W. and Muller B., Quantum Mechanics. Symmetries. 2nd ed., Springer, Berlin (1994).

    Book  Google Scholar 

  3. Van der Waerden B. L., Die gruppentheoretische Methode in der Quantenmechanik, Julius Springer, Berlin (1932).

    Book  Google Scholar 

  4. Godunov S. K. and Mikhailova T. Yu., Representations of the Rotation Group and Spherical Functions, Nauchnaya Kniga, Novosibirsk (1998) [Russian].

    Google Scholar 

  5. Godunov S. K. and Gordienko V. M., “The Clebsch–Gordan coefficients with respect to various bases for unitary and orthogonal representations of \( SU(2) \) and \( SO(3) \),” Sib. Math. J., vol. 45, no. 3, 443–458 (2004).

    Article  Google Scholar 

  6. Gordienko V. M., “On the matrices of Clebsch–Gordan coefficients,” Sib. Math. J., vol. 58, no. 6, 990–1003 (2017).

    Article  MathSciNet  Google Scholar 

  7. Selivanova S. V., “Invariant recording of elasticity theory equations,” J. Appl. Mech. Techn. Phys., vol. 49, no. 5, 809–822 (2008).

    Article  Google Scholar 

  8. Baid G. E. and Biedenharn L. C., “On the representations of semisimple Lie groups. II,” J. Math. Phys., vol. 4, no. 12, 1449–1466 (1963).

    Article  MathSciNet  Google Scholar 

  9. Biedenharn L. C. and Louck J. D., “A pattern calculus for tensor operators in the unitary groups,” Comm. Math. Phys., vol. 8, no. 2, 89–131 (1968).

    Article  MathSciNet  Google Scholar 

  10. Biedenharn L. C. and Louck J. D., “A pattern calculus for tensor operators in the unitary groups,” Comm. Math. Phys., vol. 8, no. 2, 89–131 (1968).

    Article  MathSciNet  Google Scholar 

  11. Biedenharn L. C. and Louck J. D., “Canonical adjoint tensor operators in \( U(n) \),” J. Math. Phys., vol. 11, no. 8, 2368–2411 (1970).

    Article  MathSciNet  Google Scholar 

  12. Biedenharn L. C., Ciftan M., and Chacón E., “On the evaluation of the multiplicity-free Wigner coefficients of \( U(n) \),” J. Math. Phys., vol. 13, no. 5, 577–589 (1972).

    Article  MathSciNet  Google Scholar 

  13. Biedenharn L. C. and Louck J. D., “On the structure of the canonical tensor operators in the unitary groups. II. An extension of the pattern calculus rules and the canonical splitting in \( U(3) \),” J. Math. Phys., vol. 13, no. 12, 1957–1984 (1972).

    Article  Google Scholar 

  14. Artamonov D. V., “The Clebsh–Gordan coefficients for the algebra \( \mathfrak{gl}_{3} \) and hypergeometric functions,” St. Petersburg Math. J., vol. 33, no. 1, 1–22 (2022).

    MathSciNet  MATH  Google Scholar 

  15. Artamonov D. V., “Formula for the product of Gauss hypergeometric functions and applications,” J. Math. Sci., vol. 249, no. 6, 1–29 (2020).

    MathSciNet  MATH  Google Scholar 

  16. Zhelobenko D. P., Compact Lie Groups and Their Representations, MTsNMO, Moscow (2007) [Russian].

    Google Scholar 

  17. Gelfand I. M., Graev M. I., and Retakh V. S., “General hypergeometric systems of equations and series of hypergeometric type,” Uspekhi Mat. Nauk, vol. 47, no. 4, 3–82 (1992).

    MathSciNet  MATH  Google Scholar 

  18. Klyachko A. A., Stable Vector Bundles and Hermitian Operators [Preprint], IGM, University of Marne-la-Vallee (1994).

    Google Scholar 

  19. Knutson A. and Tao T., “The honeycomb model of \( GL_{n}({𝔺}) \) tensor products. I: Proof of the saturation conjecture,” J. Amer. Math. Soc., vol. 12, no. 4, 1055–1090 (1999).

    Article  MathSciNet  Google Scholar 

  20. Manon C. and Zhou Z., “Semigroups of \( sl_{2}({𝔺}) \) tensor product invariants,” J. Algebra, vol. 400, 94–104 (2014).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Artamonov.

Additional information

Translated from Sibirskii Matematicheskii Zhurnal, 2022, Vol. 63, No. 4, pp. 717–735. https://doi.org/10.33048/smzh.2022.63.401

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Artamonov, D.V. Formulas for Calculating the \( 3j \)-Symbols of the Representations of the Lie Algebra \( {\mathfrak{gl}}_{3} \) for the Gelfand–Tsetlin Bases. Sib Math J 63, 595–610 (2022). https://doi.org/10.1134/S0037446622040012

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0037446622040012

Keywords

UDC

Navigation