Skip to main content
Log in

Thermodynamic Properties of Gadolinium Tantalate Gd3TaO7

  • CHEMICAL THERMODYNAMICS AND THERMOCHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Relaxation, adiabatic, and differential scanning calorimetry in the 2–1350 K range of temperatures are used to measure the molar heat capacity of synthesized gadolinium tantalate Gd3TaO7 characterized via X-ray diffraction, scanning electron microscopy (SEM), and chemical analysis. Such thermodynamic functions of the sample as entropy, the change in enthalpy, and reduced Gibbs energy are calculated. The enthalpy of formation of Gd3TaO7 from elements is determined from literature data. Gadolinium tantalate’s Gibbs energy of formation from oxides in the range of high temperatures is calculated to estimate the stability of gadolinium tantalate relative to its constituent oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. N. I. Timofeeva and O. A. Mordovin, Russ. J. Inorg. Chem. 15, 440 (1970).

    Google Scholar 

  2. K. I. Portnoi, N. I. Timofeeva, and S. E. Salibekov, Izv. Akad. Nauk SSSR, Inorg. Mater. 11, 384 (1975).

    Google Scholar 

  3. Y. Yokogama, N. Ishzawa, S. Somiya, and M. Yoshimura, J. Am. Ceram. Soc. 74, 2073 (1991). https://doi.org/10.1111/j.1151-2916.1991.tb08261.x

    Article  Google Scholar 

  4. C.-F. Chen, R. A. Synowicky, M. Brand, et al., J. Am. Ceram. Soc. 101, 1847 (2018). https://doi.org/10.1111/jace.15359

    Article  CAS  Google Scholar 

  5. N. Preux, A. Rolle, C. Merlin, et al., C. R. Chim. 13, 1351 (2010). https://doi.org/10.1016/j.crci.2010.07.009

    Article  CAS  Google Scholar 

  6. F. Wu, P. Wu, L. Chen, and J. Feng, J. Eur. Ceram. Soc. (2019). https://doi.org/10.1016/j.jeurceramsoc.2019.02.002

  7. Z. Xue, Y. Ma, and H. Guo, J. Alloys Compd. 723, 759 (2017). https://doi.org/10.1016/j.jallcom.2017.10.266

    Article  CAS  Google Scholar 

  8. W. Pan, S. R. Phillpot, C. Wan, et al., MRS Bull. 37, 917 (2012). https://doi.org/10.1557/mrs.2012.234

    Article  CAS  Google Scholar 

  9. X. Q. Cao, R. Vassen, and D. Stoever, J. Eur. Ceram. Soc. 24, 1 (2004). https://doi.org/10.1016/s0955-2219(03)00129-8

    Article  CAS  Google Scholar 

  10. J. W. Fergus, Metall. Mater. Trans. E 1, 118 (2014). https://doi.org/10.1007/s40553-014-0012-y

    Article  CAS  Google Scholar 

  11. D. Li, P. Jiang, R. Gao, et al., J. Adv. Ceram. 10, 551 (2021). https://doi.org/10.1007/s40145-021-0457-2

    Article  CAS  Google Scholar 

  12. A. Nieto, R. Agrawal, L. Bravo, et al., Int. Mater. Rev., 1 (2020). https://doi.org/10.1080/09506608.2020.1824414

  13. D. L. Poerschke, R. W. Jackson, and C. G. Levi, Ann. Rev. Mater. Res. 47, 297 (2017). https://doi.org/10.1146/annurev-matsci-010917-105000

    Article  CAS  Google Scholar 

  14. T. Subramani and A. Navrotsky, Inorg. Chem. 58, 16126 (2019). https://doi.org/10.1021/acs.inorgchem.9b02675

    Article  CAS  PubMed  Google Scholar 

  15. A. N. Klimenko, V. S. Sergeev, and V. P. Sirotinkin, Izv. Akad. Nauk SSSR, Inorg. Mater. 24, 1052 (1988).

    CAS  Google Scholar 

  16. A. V. Tyurin, A. V. Khoroshilov, V. N. Guskov, G. E. Nikiforova, L. Kh. Baldaev, and K. S. Gavrichev, Russ. J. Inorg. Chem. 63, 1599 (2018). https://doi.org/10.1134/S0036023618120215

    Article  CAS  Google Scholar 

  17. A. V. Guskov, P. G. Gagarin, V. N. Guskov, A. V. Tyurin, and K. S. Gavrichev, Russ. J. Inorg. Chem. 66, 1512 (2021). https://doi.org/10.1134/S0036023621100077

    Article  CAS  Google Scholar 

  18. https://www.qdusa.com/products/ppms.html.

  19. M. E. Wieser, Pure Appl. Chem. 78, 2051 (2006). https://doi.org/10.1351/pac200678112051

    Article  CAS  Google Scholar 

  20. Data base PDF Number 00-038-1409.

  21. P. G. Gagarin, A. V. Guskov, V. N. Guskov, et al., Ceram. Int. 47, 2892 (2021). https://doi.org/10.1016/j.ceramint.2020.09072

    Article  CAS  Google Scholar 

  22. M. A. Ryumin, E. G. Sazonov, V. N. Guskov, P. G. Gagarin, A. V. Khoroshilov, A. V. Guskov, K. S. Gavrichev, L. Kh. Baldaev, I. V. Mazilin, and L. N. Golushina, Inorg. Mater. 53, 728 (2017). https://doi.org/10.1134/S00201685170701147

    Article  CAS  Google Scholar 

  23. S. Lutique, P. Javorsky, R. J. M. Konings, et al., J. Chem. Thermodyn. 36, 609 (2004). https://doi.org/10.1016/j.jct.2004.03.017

    Article  CAS  Google Scholar 

  24. V. N. Guskov, A. V. Tyurin, A. V. Guskov, et al., Ceram. Int. 46, 12822 (2020). https://doi.org/10.1016/J.ceramint.2020.02.052

    Article  CAS  Google Scholar 

  25. R. D. Chirico and E. F. Westrum, Jr., J. Chem. Thermodyn. 12, 71 (1980). https://doi.org/10.1016/0021-9614(80)90118-4

    Article  CAS  Google Scholar 

  26. E. F. Westrum, Jr., J. Thermal Anal. 30, 1209 (1985). https://doi.org/10.1007/bf01914288

    Article  CAS  Google Scholar 

  27. R. J. M. Konings, O. Beneš, A. Kovács, et al., J. Phys. Chem. Ref. Data 43, 013101 (2014). https://doi.org/10.1063/1.4825256

  28. K. T. Jacob, C. Shekhar, and Y. Waseda, J. Chem. Thermodyn. 41, 748 (2009). https://doi.org/10.1016/j.jct.2008.12.006

    Article  CAS  Google Scholar 

  29. J. Leitner, P. Chuchvalec, D. Sedmidubský, et al., Thermochim. Acta 395, 27 (2003). https://doi.org/10.1016/S0040-6031(02)00177-6

    Article  CAS  Google Scholar 

  30. C. G. Maier and K. K. Kelley, J. Am. Chem. Soc. 54, 3243 (1932). https://doi.org/10.1021/ja01347a029

    Article  CAS  Google Scholar 

  31. A. L. Voskov, I. B. Kutsenok, and G. F. Voronin, CALPHAD 61, 50 (2018). https://doi.org/10.1016/j.calphad.2018.02.001

    Article  CAS  Google Scholar 

  32. G. F. Voronin and I. B. Kutsenok, J. Chem. Eng. Data 58, 2083 (2013). https://doi.org/10.1021/je400316m

    Article  CAS  Google Scholar 

  33. http://www.chem.msu.su/cgi-bin/tkv.pl.

  34. T. I. Panova, K. I. Isupova, and E. K. Keler, Neorg. Mater. 14, 781 (1978).

    CAS  Google Scholar 

  35. V. B. Glushkova, Polymorphism of Oxides of Rare Earth Elements (Nauka, Leningrad, 1967) [in Russian].

    Google Scholar 

Download references

Funding

This work was performed on equipment at the shared resource center of the Kurnakov Institute of General and Inorganic Chemistry under the terms of grant no. 18-13-00025 from the Russian Science Foundation (https://rscf.ru/project/18-13-00025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Guskov.

Ethics declarations

The authors declare they have no conflicts of interest.

Additional information

Translated by E. Glushachenkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guskov, A.V., Gagarin, P.G., Guskov, V.N. et al. Thermodynamic Properties of Gadolinium Tantalate Gd3TaO7. Russ. J. Phys. Chem. 96, 1195–1203 (2022). https://doi.org/10.1134/S0036024422060103

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024422060103

Keywords:

Navigation