Skip to main content
Log in

Facile Synthesis, Optical and Photoluminescence Properties of Copper Tungstate Phosphors with Strong Near-Infrared Photoabsorption

  • PHOTOCHEMISTRY AND MAGNETOCHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Herein, we demonstrate for the first time the synthesis of copper tungstate (CuWO4) crystal by a facile polyacrylamide gel route. X-ray diffraction patterns reveal that the pure phase CuWO4 obtained by calcining xerogel at 900°C has the triclinic crystal structure. The component of prepared CuWO4 are further confirmed by the X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. Transmission electron microscope results demonstrate that the CuWO4 has high crystallinity. Ultraviolet-visible absorption spectra indicate that the samples have remarkable photoabsorption in the near-infrared region. Photoluminescence spectra show that the CuWO4 has an emission peak at 583 nm with excitation wavelength of 430 nm. The synthesized CuWO4 phosphors with attractive optical and photoluminescence properties have potential applications in photoelectric devices and lasers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. K. Aneesh, C. S. R. Vusa, and S. Berchmans, Sens. Actuators, B 253, 723 (2017).

    Article  CAS  Google Scholar 

  2. A. C. Catto, T. Fiorido, E. L. S. Souza, et al., J. Alloys Compd. 748, 411 (2018).

    Article  CAS  Google Scholar 

  3. L. Liang, H. Liu, Y. Tian, et al., Mater. Lett. 182, 302 (2016).

    Article  CAS  Google Scholar 

  4. M. Thiruppathi, M. Vahini, P. Devendran, et al., J. Nanosci. Nanotechnol. 19, 7026 (2019).

    Article  CAS  Google Scholar 

  5. S. M. Hosseinpour-Mashkani and A. Sobhani-Nasab, J. Mater. Sci.: Mater. Electron. 27, 7548 (2016).

    CAS  Google Scholar 

  6. W. Wang, L. W. Hu, J. B. Ge, et al., Chem. Mater. 26, 3721 (2014).

    Article  CAS  Google Scholar 

  7. S. M. Pourmortazavi, M. Rahimi-Nasrabadi, M. Khalilian-Shalamzari, et al., J. Inorg. Organomet. Polym. 24, 333 (2014).

    Article  CAS  Google Scholar 

  8. S. F. Wang, H. J. Gao, Y. Wang, et al., J. Electron. Mater. 49, 2450 (2020).

    Article  CAS  Google Scholar 

  9. S. F. Wang, H. J. Gao, G. Z. Sun, et al., Opt. Mater. 99, 109562 (2020).

  10. M. Denk, D. Kuhness, M. Wagner, et al., ACS Nano 8, 3947 (2014).

    Article  CAS  Google Scholar 

  11. P. Raizada, S. Sharma, A. Kumar, et al., J. Environ. Chem. Eng. 8, 104230 (2020).

  12. S. Dey, R. A. Ricciardo, H. L. Cuthbert, and P. M. Woodward, Inorg. Chem. 53, 4394 (2014).

    Article  CAS  Google Scholar 

  13. Z. K. Wu, Z. Q. Zhao, G. Cheung, and R. M. Doughty, J. Electrochem. Soc. 166, H3014 (2019).

    Article  CAS  Google Scholar 

  14. W. C. Ding, X. N. Wu, and Q. F. Lu, Mater. Lett. 253, 323 (2019).

    Article  CAS  Google Scholar 

  15. F. Ahmadi, M. Rahimi-Nasrabadi, and M. Eghbali-Arani, J. Mater. Sci.: Mater. Electron. 28, 5244 (2017).

    CAS  Google Scholar 

  16. W. Zhang, J. J. Yin, F. Q. Min, et al., J. Alloys Compd. 690, 221 (2017).

    Article  CAS  Google Scholar 

  17. Y. Gao, O. Zandi, and T. W. Hamann, J. Mater. Chem. A 4, 2826 (2016).

    Article  CAS  Google Scholar 

  18. J. Ruiz-Fuertes, D. Errandonea, A. Segura, et al., High Press. Res. 28, 565 (2008).

    Article  CAS  Google Scholar 

  19. E. L. S. Souza, J. C. Sczancoski, I. C. Nogueira, et al., Ultrason. Sonochem. 38, 256 (2017).

    Article  CAS  Google Scholar 

  20. J. E. Yourey, and B. M. Bartlett, J. Mater. Chem. 21, 7651 (2011).

    Article  CAS  Google Scholar 

  21. C. M. Tian, M. Jiang, D. Tang, et al., J. Mater. Chem. A 7, 11895 (2019).

    Article  CAS  Google Scholar 

  22. M. Wen, S. Wang, R. Q. Jiang, et al., Biomater. Sci. 7, 4651 (2019).

    Article  CAS  Google Scholar 

  23. G. Z. Sun, G. A. Sun, M. Zhong, S. F. Wang, X. T. Zu, and X. Xiang, Russ. J. Phys. Chem. A 90, 691 (2016).

    Article  CAS  Google Scholar 

  24. S. F. Wang, H. J. Gao, J. Y. Li, et al., J. Phys. Chem. Solids 150, 109891 (2021).

  25. J. Y. Li, S. F. Wang, G. A. Sun, et al., Mater. Today Chem. 19, 100390 (2021).

  26. S. F. Wang, H. J. Gao, L. M. Fang, et al., Chem. Eng. J. Adv. 6, 100089 (2021).

  27. S. F. Wang, G. Z. Sun, L. M. Fang, et al., Sci. Rep. 5, 12849 (2015).

    Article  CAS  Google Scholar 

  28. A. S. Hammad, H. M. El-Bery, A. H. EL-Shazly, and M. F. Elkady, Int. J. Electrochem. Sci. 13, 362 (2018).

    Article  CAS  Google Scholar 

  29. M. Eghbali-Arani, A. Sobhani-Nasabb, M. Rahimi-Nasrabadi, et al., Ultrason. Sonochem. 43, 120 (2018).

    Article  CAS  Google Scholar 

  30. M. Thiruppathi, K. Selvakumar, M. Arunpandian, et al., Colloids Surf., A 563, 148 (2019).

    Article  CAS  Google Scholar 

  31. A. Bhattacharjee and M. Ahmaruzzaman, RSC Adv. 6, 41348 (2016).

    Article  CAS  Google Scholar 

  32. H. M. Dong, Y. H. Li, D. Gao, et al., J. Alloys Compd. 785, 660 (2019).

    Article  CAS  Google Scholar 

  33. Z. Y. Lin, W. J. Li, and G. W. Yang, Appl. Catal. B 227, 35 (2018).

    Article  CAS  Google Scholar 

  34. P. Nithya and C. Roumana, J. Mater. Sci.: Mater. Electron. 31, 9151 (2020).

    CAS  Google Scholar 

  35. P. Yadav and E. Sinha, Macromol. Symp. 388, 1900019 (2019).

  36. O. Yu. Khyzhun, V. L. Bekenev, and Yu. M. Solonin, J. Alloys Compd. 480, 184 (2009).

    Article  CAS  Google Scholar 

  37. M. V. Lalic, Z. S. Popovic, and F. R. Vukajlovic, Comput. Mater. Sci. 63, 163 (2012).

    Article  CAS  Google Scholar 

  38. J. R. Fuertes, J. P. Porres, A. Segura, et al., J. Appl. Phys. 116, 103706 (2014).

Download references

ACKNOWLEDGMENTS

This work was supported by the Science and Technology Research Program of Chongqing Education Commission of China (KJQN202001225, KJZD-K202001202, KJQN201901), project (YB2020C0402, ZD2020A0401) supported by Chongqing Key Laboratory of Geological Environment Monitoring and Disaster Early-Warning in Three Gorges Reservoir Area, Chongqing Three Gorges University, the Talent introduction project (09826501, 09924601), the NSAF joint Foundation of China (U2030116), the Chongqing Natural Science Foundation (cstc2019jcyj-msxmX0310), project 2019DB02 supported by NPL, CAEP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangzhuang Sun.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, G., Gao, Q., Tang, S. et al. Facile Synthesis, Optical and Photoluminescence Properties of Copper Tungstate Phosphors with Strong Near-Infrared Photoabsorption. Russ. J. Phys. Chem. 96, 1348–1355 (2022). https://doi.org/10.1134/S0036024422060097

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024422060097

Keywords:

Navigation