Skip to main content
Log in

Binary Solid–Liquid Solubility Determination and Model Correlation of Furaneol in Different Pure Solvents

  • PHYSICAL CHEMISTRY OF SOLUTIONS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The solubility of furaneol in 2-butanol, isopropanol, acetone, cyclohexanone, acetonitrile, 1,4‑dioxane, methyl acetate, n-propyl acetate, chloroform, dichloromethane, and DMF was measured by the equilibrium method under atmospheric pressure at temperatures ranging from 278.15 to 313.15 K. The solubility in experimental pure solvents increased with the increase of temperature. The solubility order of furaneol in selected pure solvents was DMF > chloroform > dichloromethane > 1,4-dioxane > isopropanol > propyl acetate > methyl acetate > cyclohexanone > acetone ≈ 2-butanol > acetonitrile. The experimental data were correlated by four thermodynamic models (Wilson, NRTL, modified Apelblat, and λh), all of the models can give a satisfactory correlation. In addition, mixed thermodynamic properties of Gibbs energy, enthalpy and entropy of furaneol in selected solvents were calculated based on Wilson model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. S. Elss, C. Preston, C. Hertzig, F. Heckel, E. Richling, and P. Schreier, LWT-Food Sci Technol. 38, 263 (2005).

    Article  CAS  Google Scholar 

  2. K. Sasaki, H. Takase, H. Kobayashi, H. Matsuo, and R. Takata, J. Exp. Bot. 66, 6167 (2015).

    Article  CAS  Google Scholar 

  3. X. F. Du and M. Qian, J. Chromatogr., A 1208, 197 (2008).

  4. R. G. Buttery, G. R. Takeoka, M. Naim, H. Rabinowitch, and Y. Nam, J. Agric. Food Chem. 49, 4349 (2001).

    Article  CAS  Google Scholar 

  5. Y. Wang, H. R. Juliani, and J. E. Simon, J. Food Chem. 115, 233 (2009).

    Article  CAS  Google Scholar 

  6. P. Steinhaus and P. Schieberle, J. Agric. Food Chem. 55, 6262 (2007).

    Article  CAS  Google Scholar 

  7. I. Cutzach, P. Chatonnet, R. Henry, and D. Dubourdieu, J. Agric. Food Chem. 45, 2217 (1997).

    Article  CAS  Google Scholar 

  8. Y. Karagül-Yüceer, M. A. Drake, and K. R. Cadwallader, J. Agric. Food Chem. 49, 2948 (2001).

    Article  Google Scholar 

  9. G. A. Burdock, Fenaroli’s Handbook of Flavor Ingredients (CRC, Boca Raton, FL, 2010).

    Google Scholar 

  10. Q. Li, F. Lu, Y. Tian, S. Feng, Y. Shen, and B. Wang, J. Chem. Eng. Data 58, 1020 (2013).

    Article  CAS  Google Scholar 

  11. B. Long, J. Li, Y. Song, and J. Du, J. Ind. Eng. Chem. Res. 50, 8354 (2011).

    Article  CAS  Google Scholar 

  12. J. M. Prausnitz, R. N. Lichtenthaler, and E. G. de Azevedo, Molecular Thermodynamics of Fluid-Phase Equilibria, 3rd ed. (Prentice-Hall, Upper-Saddle River, NJ, 1999).

    Google Scholar 

  13. C. M. Hansen and A. L. Smith, Carbon 42, 1591 (2004).

    Article  CAS  Google Scholar 

  14. K. Kawashiro, K. Nishiguchi, and T. Nara, J. Origins Life Evol. B 19, 133 (1989).

    Article  CAS  Google Scholar 

  15. F. L. Nordstrom, B. Linehan, R. Teerakapibal, and H. Y. Li, J. Chem. Eng. Data 19, 1336 (2019).

    CAS  Google Scholar 

  16. F. Zhang, Y. C. Tang, L. Wang, L. Xu, and G. J. Liu, J. Chem. Eng. Data 60, 1699 (2015).

    Article  CAS  Google Scholar 

  17. L. Wang, C. Z. Xing, L. Xu, and G. J. Liu, J. Russ. J. Phys. Chem. A 92, 2204 (2018).

    Google Scholar 

  18. H. K. Zhao, H. Xu, Z. P. Yang, and R. R. Li, J. Chem. Eng. Data 58, 3061 (2013).

    Article  CAS  Google Scholar 

  19. H. F. Schryver, J. Am. Chem. Soc. 5, 517 (1966).

    CAS  Google Scholar 

  20. E. Königsberger, J. Chem. Eng. Data 64, 381 (2019).

    Article  Google Scholar 

  21. T. B. Cui, T. L. Luo, C. Zhang, Z. B. Mao, and G. J. Liu, J. Chem. Eng. Data 54, 1065 (2009).

    Article  CAS  Google Scholar 

  22. L. Wang, J. P. Sun, H. H. Zhang, Z. Q. Shen, L. Xu, and G. J. Liu, J. Mol. Liq. 283, 462 (2019).

    Article  CAS  Google Scholar 

  23. S. P. Pinho and E. A. Macedo, J. Chem. Eng. Data 50, 29 (2005).

    Article  CAS  Google Scholar 

  24. N. Y. Zhang, S. Li, H. Y. Yang, M. Y. Li, Y. Yang, and W. W. Tang, J. Chem. Eng. Data 64, 995 (2019).

    Article  CAS  Google Scholar 

  25. D. Y. Li, H. X. Hao, B. B. Fang, N. Wang, Y. Y. Zhou, X. Huang, and Z. Wang, J. Fluid Phase Equilib. 461, 57 (2018).

    Article  CAS  Google Scholar 

  26. W. E. Acree, Jr., J. Fluid Phase Equilib. 479, 33 (2019).

    Article  CAS  Google Scholar 

  27. J. Li, H. Hao, N. Guo, N. Wang, Y. Hao, Y. Luan, K. Chen, and X. Huang, J. Mol. Liq. 243, 313 (2017).

    Article  CAS  Google Scholar 

  28. W. J. Nong, X. P. Chen, L. L. Wang, J. Z. Liang, H. L. Wang, Y. Y. Huang, and Z. T. Tong, J. Chem. Thermodyn. 68, 199 (2014).

    Article  CAS  Google Scholar 

  29. S. Tsukasa, S. Hiroko, M. Hiroki, and H. Kenji, J. Nippon Shokuhin Kagaku Kogaku Kaishi 61, 519 (2014).

    Article  Google Scholar 

  30. H. Buchowski, A. Ksiazczak, and S. Pietrzyk, J. Phys. Chem. 84, 975 (1980).

    Article  CAS  Google Scholar 

  31. L. Wang, F. Zhang, X. Q. Gao, T. L. Luo, L. Xu, and G. J. Liu, J. Russ. J. Phys. Chem. A 91, 1432 (2017).

    CAS  Google Scholar 

  32. C. Z. Xing, L. Wang, L. Xu, and G. J. Liu, J. Russ. J. Phys. Chem. A 92, 2693 (2018).

    Google Scholar 

  33. P. S. Zhang, R. Zhao, C. Zhang, T. Li, and B. Z. Ren, J. Fluid Phase Equilib. 475, 77 (2018).

    Article  CAS  Google Scholar 

  34. H. X. Li, Y. H. Dou, J. W. Zhang, L. Xu, and G. J. Liu, J. Mol. Liq. 243, 387 (2017).

    Article  CAS  Google Scholar 

  35. N. Y. Zhang, S. Li, H. Y. Yang, M. Y. Li, Y. Yang, and W. W. Tang, J. Chem. Eng. Data 64, 995 (2019).

    Article  CAS  Google Scholar 

  36. L. Wang, C. Z. Xing, L. Xu, and G. J. Liu, J. Phys. Chem. A 93, 1008 (2019).

    Article  Google Scholar 

  37. Y. Yu, F. Zhang, X. Q. Gao, L. Xu, and G. J. Liu, J. Chem. Thermodyn. 101, 308 (2016)

    Article  CAS  Google Scholar 

  38. J. Xu, Y. Wang, G. Wang, C. Huang, and Q. X. Yin, J. Chem. Thermodyn. 92, 12 (2016).

    Article  CAS  Google Scholar 

  39. S. Ian, Handbook of Organic Solvent Properties (Arnold, Halsted Press, London, New York, 1996).

    Google Scholar 

  40. C. H. Gu, H. Li, R. B. Gandhi, and K. Raghavan, Int. J. Pharm. (Kidlington) 283, 117 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaocong Li, Li Xu or Guoji Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiaocong Li, Xu, L. & Liu, G. Binary Solid–Liquid Solubility Determination and Model Correlation of Furaneol in Different Pure Solvents. Russ. J. Phys. Chem. 94, 2742–2751 (2020). https://doi.org/10.1134/S0036024420130130

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024420130130

Keywords:

Navigation