Skip to main content
Log in

Effect of the Functionalization of Nitrogen-Doped Carbon Nanotubes on Electrical Conductivity

  • ON THE 90th ANNIVERSARY OF THE DEPARTMENT OF CHEMISTRY OF THE MOSCOW STATE UNIVERSITY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Values of specific electric conductivity are determined for nitrogen-doped carbon nanotubes (N‑CNTs) and N-CNTs oxidized with 68 wt % HNO3. It is established that the electrical conductivity of the material falls considerably along with nitrogen content in the tubular structure of the N-CNTs and an increase in the number of oxygen-containing groups on their surfaces due to a rise in the concentration of defects in their structure. The electrical conductivity of all types of samples rises along with pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, Science (Washington, D.C., U. S.) 297, 787 (2002).

    Article  CAS  Google Scholar 

  2. A. Purceno, B. Machado, A. Teixeira, et al., Nanoscale 7, 294 (2015).

    Article  CAS  Google Scholar 

  3. Z. Liu, Y. Tao, X. Song, et al., RSC Adv. 7, 6664 (2017).

    Article  CAS  Google Scholar 

  4. S. Savilov, A. Ivanov, E. Suslova, et al., Adv. Mater. Res. 364, 444 (2012).

    Article  CAS  Google Scholar 

  5. O. Podyacheva and Z. Ismagilov, Catal. Today 249, 12 (2015).

    Article  CAS  Google Scholar 

  6. J. Pels, F. Kapteijn, J. Moulijin, et al., Carbon 33, 1641 (1995).

    Article  CAS  Google Scholar 

  7. R. Czerw, M. Terrones, J. Charlier, et al., Nano Lett. 1, 457 (2001).

    Article  CAS  Google Scholar 

  8. Y. Wang, Y. Shao, D. Matson, et al., ACS Nano 4, 1790 (2010).

    Article  CAS  Google Scholar 

  9. D. Kim, C. Lin, T. Mihalisin, et al., Chem. Mater. 3, 686 (1991).

    Article  CAS  Google Scholar 

  10. J. Wilder, L. Venema, A. Rinzler, et al., Nature (London, U.K.) 391, 59 (1998).

    Article  Google Scholar 

  11. M. Mattesini, S. Matar, and J. Etourneau, J. Mater. Chem. 10, 709 (2000).

    Article  CAS  Google Scholar 

  12. Y. Huang, R. Gao, and R. Liu, Synth. Met. 113, 251 (2000).

    Article  CAS  Google Scholar 

  13. A. Shalagina, Z. Ismagilov, O. Podyacheva, et al., Carbon 45, 1808 (2007).

    Article  CAS  Google Scholar 

  14. E. Ibrahim, V. Khavrus, A. Leonhardt, et al., Diamond Relat. Mater. 19, 1199 (2010).

    Article  CAS  Google Scholar 

  15. J. Wiggins-Camacho and K. Stevenson, J. Phys. Chem. C 113, 19082 (2009).

    Article  CAS  Google Scholar 

  16. C. Ewels and M. Glerup, J. Nanosci. Nanotechnol. 5, 1345 (2005).

    Article  CAS  Google Scholar 

  17. I. Kunadian, S. Lipka, C. Swartz, et al., J. Electrochem. Soc. 156, K110 (2009).

    Article  CAS  Google Scholar 

  18. O. Podyacheva, S. Cherepanova, A. Romanenko, et al., Carbon 122, 475 (2017).

    Article  CAS  Google Scholar 

  19. R. Taylor and A. Humffray, J. Electroanal. Chem. 64, 63 (1975).

    Article  CAS  Google Scholar 

  20. Z. Zhang, D. Tryk, and E. Yeager, Proc. Electrochem. Soc., 84 (1984).

  21. B. An, S. Xu, L. Li, et al., J. Mater. Chem. A 1, 7222 (2013).

    Article  CAS  Google Scholar 

  22. I. Mazov, V. Kuznetsov, I. Simonova, et al., Appl. Surf. Sci. 258, 6272 (2012).

    Article  CAS  Google Scholar 

  23. Q. Li, Y. Li, X. Zhang, et al., Adv. Mater. 19, 3358 (2007).

    Article  CAS  Google Scholar 

  24. D. Pantea, H. Darmstadt, S. Kaliaguine, et al., Carbon 39, 1147 (2001).

    Article  CAS  Google Scholar 

  25. E. Arkhipova, S. Ivanov, N. Strokova, et al., Carbon 125, 20 (2017).

    Article  CAS  Google Scholar 

  26. E. Suslova, K. Maslakov, S. Savilov, et al., Carbon 102, 506 (2016).

    Article  CAS  Google Scholar 

  27. E. Suslova, S. Savilov, J. Ni, et al., Phys. Chem. Chem. Phys. 19, 2269 (2017).

    Article  CAS  Google Scholar 

  28. H. Chen, F. Sun, J. Wang, et al., J. Phys. Chem. C 117, 8318 (2013).

    Article  CAS  Google Scholar 

  29. Z. Ismagilov, A. Shalagina, O. Podyacheva, et al., Carbon 47, 1922 (2009).

    Article  CAS  Google Scholar 

  30. K. Fujisawa, T. Tojo, H. Muramatsu, et al., Nanoscale 3, 4359 (2011).

    Article  CAS  Google Scholar 

  31. G. U. Sumanasekera, C. K. W. Adu, B. K. Pradhan, et al., Phys. Rev. B 65, 035408 (2001).

    Article  Google Scholar 

  32. K. Euler, J. Power Sources 3, 117 (1978).

    Article  CAS  Google Scholar 

  33. J. Sanchez-Gonzalez, M. Macıas-Garcıa, M. Alexandre-Franco, and V. Gomez-Serrano, Carbon 43, 741 (2005).

    Article  CAS  Google Scholar 

  34. S. Marinkovic, C. Suznjevic, and M. Djordjevic, Phys. Status Solid A 4, 743 (1971).

    Article  CAS  Google Scholar 

  35. B. Marinho, M. Ghislandi, E. Tkalya, et al., Powder Technol. 221, 351 (2012).

    Article  CAS  Google Scholar 

  36. T. Sogabe and T. Matsumoto, J. Eur. Ceram. Soc. 16, 395 (1996).

    Article  CAS  Google Scholar 

  37. S. Kim, G. Mulholland, and M. Zachariah, Carbon 47, 1297 (2009).

    Article  CAS  Google Scholar 

  38. I. V. Zolotukhin, I. M. Golev, A. E. Markova, S. N. Blinov, D. A. Grishin, and E. G. Rakov, Tech. Phys. Lett. 31, 159 (2005).

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Foundation for Basic Research (project GFEN_a no. 18-53-53032) in the scope of State assignments for research organizations and the Development Program of the Moscow State University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. V. Suslova or E. A. Arkhipova.

Additional information

Translated by O. Polyakov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suslova, E.V., Arkhipova, E.A., Kalashnik, A.V. et al. Effect of the Functionalization of Nitrogen-Doped Carbon Nanotubes on Electrical Conductivity. Russ. J. Phys. Chem. 93, 1952–1956 (2019). https://doi.org/10.1134/S0036024419100303

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024419100303

Keywords:

Navigation