Skip to main content
Log in

Synthesis, Structure, and Phase Composition of High-Entropy Ceramics (HfTiCN)-TiB2

  • INORGANIC MATERIALS AND NANOMATERIALS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The phase composition and structure of the composite ceramic material (HfTiCN)-TiB2 obtained from the high-entropy system Hf–Ti–C–N–B in the mode of conjugated self-propagating high-temperature synthesis (SHS, combustion) has been studied. Quantification using the Rietveld method has shown that the content of the HfTiCN phase in the combustion products is 40 wt %, and the content of the TiB2 phase is 60 wt %. It has been established that the structure of SHS materials consists of HfTiCN particles and agglomerates, which are distributed in the TiB2 matrix. The average particle size of TiB2 and HfTiCN is 6.1 and 3.3 µm, respectively. A probable mechanism for the formation of a composite material (HfTiCN)-TiB2 in the mode of coupled self-propagating high-temperature synthesis of the Hf–Ti–C–N–B system is proposed. The results presented indicate the fundamental possibility of obtaining a composite ceramic material (HfTiCN)-TiB2 by the method of self-propagating high-temperature synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. B. Cantor, I. T. H. Chang, P. Knight, and A. J. B. Vincent, Mater. Sci. Eng., A 375, 213 (2004). https://doi.org/10.1016/j.msea.2003.10.257

    Article  CAS  Google Scholar 

  2. J. W. Yeh, S.-K. Chen, S.-J. Lin, et al., Adv. Eng. Mater. 6, 299 (2004). https://doi.org/10.1002/adem.200300567

    Article  CAS  Google Scholar 

  3. X. Yang, Y. Zhang, and P. K. Liaw, Proc. Eng. 36, 292 (2012). https://doi.org/10.1016/j.proeng.2012.03.043

    Article  CAS  Google Scholar 

  4. N. S. Akhmetov, General and Inorganic Chemistry (Vyssh. Shkola, Moscow, 1981) [in Russian].

    Google Scholar 

  5. X. F. Wang, Y. Zhang, Y. Qiao, and G. L. Chen, Intermetallics 15, 357 (2007). https://doi.org/10.1016/j.intermet.2006.08.005

    Article  CAS  Google Scholar 

  6. G. V. Denisov, Russ. J. Inorg. Chem. 58, 134 (2013). https://doi.org/10.1134/S0036023613020034

    Article  CAS  Google Scholar 

  7. J. Gild and Y. Zhang, et al., Sci. Rep. 6, 37946 (2016). https://doi.org/10.1038/srep37946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. A. Matveev, I. Zhukov, M. Ziatdinov, et al., Materials 13, 1050 (2020). https://doi.org/10.3390/ma13051050

    Article  CAS  PubMed Central  Google Scholar 

  9. A. Matveev, P. Nikitin, I. Zhukov, et al., Ceram. Int. 47, 21140 (2021). https://doi.org/10.1016/j.ceramint.2021.04.117

    Article  CAS  Google Scholar 

  10. N. Evseev, P. Nikitin, M. Ziatdinov, et al., Materials 14, 5482 (2021). https://doi.org/10.3390/ma14195482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. N. Evseev, M. Ziatdinov, V. Romandin, et al., Processes 8, 1056 (2020). https://doi.org/10.3390/pr8091056

    Article  CAS  Google Scholar 

  12. A. A. Zaytsev, I. P. Borovinskaya, V. I. Vershinnikov, et al., Int. J. Refract. Met. Hard Mater. 50, 146 (2015). https://doi.org/10.1016/j.ijrmhm.2014.12.008

    Article  CAS  Google Scholar 

  13. B. R. Golla, A. Mukhopadhyay, B. Basu, et al., Prog. Mater. Sci. 111, 100651 (2020). https://doi.org/10.1016/j.pmatsci.2020.100651

    Article  CAS  Google Scholar 

  14. A. P. Amosov, Yu. V. Titova, D. A. Maidan, et al., Russ. J. Inorg. Chem. 61, 1225 (2016). https://doi.org/10.1134/S0036023616100028]

    Article  CAS  Google Scholar 

  15. M. Faraji, M. Adeli, and M. Soltanieh, Ceram. Int. 47, 2822 (2021). https://doi.org/10.1016/j.ceramint.2020.09.136

    Article  CAS  Google Scholar 

  16. A. Romero, G. P. Rodríguez, and E. Marjaliza, J. Alloys Compd. 891, 161876 (2022). https://doi.org/10.1016/j.jallcom.2021.161876

    Article  CAS  Google Scholar 

  17. E. P. Simonenko, N. P. Simonenko, D. V. Sevastyanov, et al., Russ. J. Inorg. Chem. 61, 1649 (2016). https://doi.org/10.1134/S0036023616130039

    Article  CAS  Google Scholar 

  18. A. Matveev, V. Promakhov, N. Schultz, et al., Materials 14, 5914 (2021). https://doi.org/10.3390/ma14205914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. A. P. Chizhikov, A. S. Konstantinov, and P. M. Bazhin, Russ. J. Inorg. Chem. 66, 1115 (2021). https://doi.org/10.1134/S0036023621080039]

    Article  CAS  Google Scholar 

  20. A. Pazniak, P. Bazhin, I. Shchetinin, et al., Ceram. Int. 45, 2020 (2019). https://doi.org/10.1016/j.ceramint.2018.10.101

    Article  CAS  Google Scholar 

  21. I. A. Zhukov, V. V. Promakhov, A. E. Matveev, et al., Russ. Phys. J 60, 2025 (2018). https://doi.org/10.1007/s11182-018-1319-4

    Article  CAS  Google Scholar 

  22. A. Matveev, I. Zhukov, M. Ziatdinov, et al., Materials 13, 1050 (2020). https://doi.org/10.3390/ma13051050

    Article  CAS  PubMed Central  Google Scholar 

  23. D. Yu. Kovalev, M. A. Luginina, and S. G. Vadchenko, Russ. J. Inorg. Chem. 62, 1638 (2017). https://doi.org/10.1134/S0036023617120117]

    Article  CAS  Google Scholar 

  24. P. Yu. Nikitin, I. A. Zhukov, A. E. Matveev, et al., Ceram. Int. 46, 22733 (2020). https://doi.org/10.1016/j.ceramint.2020.06.039

    Article  CAS  Google Scholar 

  25. P. Y. Nikitin, A. E. Matveev, and I. A. Zhukov, Ceram. Int. 47, 21698 (2021). https://doi.org/10.1016/j.ceramint.2021.04.183

    Article  CAS  Google Scholar 

  26. P. Yu. Nikitin, I. A. Zhukov, M. S. Boldin, et al., Russ. J. Inorg. Chem. 66, 1252 (2021). https://doi.org/10.1134/S0036023621080167]

    Article  CAS  Google Scholar 

  27. N. Kashaev, V. Ventzke, N. Stepanov, et al., Intermetallics 96, 63 (2018). https://doi.org/10.1016/j.intermet.2018.02.014

    Article  CAS  Google Scholar 

  28. V. N. Sanin, V. I. Yukhvid, D. M. Ikornikov, et al., Dokl. Phys. Chem. 470, 145 (2016). https://doi.org/10.1134/S001250161610002X]

    Article  CAS  Google Scholar 

  29. V. V. Akhachinskij and N. A. Chirin, Symposium on the Thermodynamics of Nuclear Materials, Vienna, 1975, Vol. 2, p. 467.

  30. D. L. Vrel, J. M. Lihrmann, and J. P. Petitet, J. Chem. Eng. Data 40, 280 (1995). https://doi.org/10.1021/je00017a062

    Article  CAS  Google Scholar 

Download references

Funding

The study was supported by the Council for Grants of the President of the Russian Federation, grant no. MK-3236.2021.4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Evseev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Avdeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evseev, N.S., Matveev, A.E. & Nikitin, P.Y. Synthesis, Structure, and Phase Composition of High-Entropy Ceramics (HfTiCN)-TiB2. Russ. J. Inorg. Chem. 67, 1319–1323 (2022). https://doi.org/10.1134/S0036023622080095

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023622080095

Keywords:

Navigation