Skip to main content
Log in

Conversion of Glycine to Oxalate in Presence of CuSO4⋅5H2O and Isonicotinamide

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The reaction of CuSO4⋅5H2O with glycine and 4-cyanopyridine in aqueous alkaline medium resulted in polymeric complex [Cu(ox)2(isn)2]·(CONH2)2]n (1) (where ox is oxalate, isn is isonicotinamide). Complex 1 has been studied by single crystal X-ray diffraction. Crystal structure reveals that complex 1 is a polymeric structure bridged by oxalate ions. Glycine has been oxidized to oxalate during the course of the reaction along with the in-situ hydrolysis of 4-cyanopyridine to isonicotinamide resulting in complex 1. Complex 1 was further characterized by molar conductance, UV-Vis and FT-IR spectroscopic techniques. The conversion of glycine to oxalate occurs spontaneously in aqueous solution under ambient conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. R. Huber, Angew. Chem. Int. Ed. Engl. 28, 848 (1989). https://doi.org/10.1002/anie.198908481

    Article  Google Scholar 

  2. P. Kyritsis, A. Messerschmidt, R. Huber, et al., J. Chem. Soc., Dalton Trans. 731 (1993). https://doi.org/10.1039/DT9930000731

  3. W. Kaim and J. Rall, Angew. Chem. Int. Ed. Engl. 35, 43 (1996). https://doi.org/10.1002/anie.199600431

    Article  CAS  Google Scholar 

  4. U. M. Sundaram, H. H. Zhang, B. Hedman, et al., J. Am. Chem. Soc. 119, 12525 (1997). https://doi.org/10.1021/ja972039i

    Article  CAS  Google Scholar 

  5. O. Kahn, Angew. Chem. Int. Ed. Engl. 24, 834 (1985). https://doi.org/10.1002/anie.198508341

    Article  Google Scholar 

  6. M. A. Uvarova and S. E. Nefedov, Russ. J. Coord. Chem. 47, 399 (2021). https://doi.org/10.1134/S1070328421060087

    Article  CAS  Google Scholar 

  7. E. O. Andriychenko, V. I. Zelenov, A. V. Bespalov, et al., Russ. J. Gen. Chem. 91, 1697 (2021). https://doi.org/10.1134/S1070363221090139

    Article  Google Scholar 

  8. E. Canpolat and M. Kaya, Russ. J. Coord. Chem. 31, 790 (2005). https://doi.org/10.1007/s11173-005-0170-7

    Article  CAS  Google Scholar 

  9. J. D. Ranford, P. J. Sadler, and D. A. Tocher, Dalton Trans. 3393 (1993). https://doi.org/10.1039/DT9930003393

  10. V. Rajendiran, R. Karthik, M. Palaniandavar, et al., Inorg. Chem. 46, 8208 (2007). https://doi.org/10.1021/ic700755p

    Article  CAS  PubMed  Google Scholar 

  11. F. Arjmand, M. Muddassir, and I. Yousuf, J. Photochem. Photobiol. B 136, 62 (2014). https://doi.org/10.1016/j.jphotobiol.2014.04.024

    Article  CAS  PubMed  Google Scholar 

  12. S. Jain, T. A. Khan, Y. P. Patil, et al., J. Photochem. Photobiol. B 174, 35 (2017). https://doi.org/10.1016/j.jphotobiol.2017.06.035

    Article  CAS  PubMed  Google Scholar 

  13. Y. P. Tupolova, L. D. Popov, S. A. Borodkin, et al., Russ. J. Gen. Chem. 91, 1687 (2021). https://doi.org/10.1134/S1070363221090127

    Article  Google Scholar 

  14. D. Laloo and M. K. Mahanti, J. Phys. Org. Chem. 3, 799 (1990). https://doi.org/10.1002/poc.610031205

    Article  CAS  Google Scholar 

  15. V. Soni, R. S. Sindal, and R. N. Mehrotra, Polyhedron 24, 1167 (2005). https://doi.org/10.1016/j.poly.2005.03.057

    Article  CAS  Google Scholar 

  16. T. P. Jose and S. M. Tuwar, J. Mol. Struct. 827, 137 (2007). https://doi.org/10.1016/j.molstruc.2006.05.015

    Article  CAS  Google Scholar 

  17. E. R. Stadtman and B. S. Berlett, J. Biol. Chem. 266, 17201 (1991). https://doi.org/10.1016/S0021-9258(19)47359-6

    Article  CAS  PubMed  Google Scholar 

  18. B. S. Berlett, P. B Chock, M. B. Yim, et al., Proc. Natl. Acad. Sci. USA 87, 389 (1990). https://doi.org/10.1073/pnas.87.1.389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. L. Pecci, G. Montefoschi, G. Musci, et al., Amino Acids 13, 355 (1997). https://doi.org/10.1007/BF01372599

    Article  CAS  Google Scholar 

  20. L. Meriwether and F. H. Westheime, J. Am. Chem. Soc. 78, 5119 (1956). https://doi.org/10.1021/ja01600a081

    Article  CAS  Google Scholar 

  21. M. Mortl, K. Diederichs, W. Welte, et al., J. Biol. Chem. 279, 29718 (2004). https://doi.org/10.1074/jbc.M401224200

    Article  CAS  PubMed  Google Scholar 

  22. Y. Nishiya and T. Imanaka, FEBS Lett. 438, 263 (1998). https://doi.org/10.1016/S0014-5793(98)01313-1

    Article  CAS  PubMed  Google Scholar 

  23. K. Brandenburg, Diamond. Crystal Impact (version 3.1f) GbR, Bonn, Germany (2008).

  24. D. Sun, Z. H. Wei, C. F. Yang, et al., CrystEngComm 13, 1591 (2011). https://doi.org/10.1039/C0CE00539H

    Article  CAS  Google Scholar 

  25. W. Fitzgerald, J. Foley, D. McSweeney, et al., J. Chem. Soc., Dalton Trans. 1117 (1982). https://doi.org/10.1039/DT9820001117

  26. D. Chisca, L. Croitor, E. B. Coropceanu, et al., Inorg. Chem. Commun. 132, 108864 (2021). https://doi.org/10.1016/j.inoche.2021.108864

    Article  CAS  Google Scholar 

  27. A. A. Opalade, C. J. Gomez-Garcia and N. Gerasimchuk, Cryst. Growth Des. 19, 678 (2008). https://doi.org/10.1021/acs.cgd.8b01262

    Article  CAS  Google Scholar 

  28. B. Cordero, V. Gόmez, A. E. Platero-Prats, et al., Dalton Trans. 2832 (2008). https://doi.org/10.1039/B801115J

  29. G. Verardo, A. G. Giumanini, F. Gorassini, et al., Tetrahedron 49, 10609 (1993). https://doi.org/10.1016/S0040-4020(01)81552-0

    Article  CAS  Google Scholar 

  30. F. J. Martínez-Martínez, I. I. Padilla-Martínez, M. A. Brito, et al., J. Chem. Soc., Perkin Trans. 2, 401 (1998). https://doi.org/10.1039/A704640E

    Article  Google Scholar 

  31. R. C. Paul, B. R. Sreenathan and S. L. Chadha, J. Inorg. Nucl. Chem. 28, 1225 (1966). https://doi.org/10.1016/0022-1902(66)80449-9

    Article  CAS  Google Scholar 

  32. R. C. Paul and S. L. Chadha, J. Inorg. Nucl. Chem. 31, 2753 (1969). https://doi.org/10.1016/0022-1902(69)80189-2

    Article  CAS  Google Scholar 

  33. S. Bayari, A. Ataç and Ş. Yurdakul, J. Mol. Struct. 655, 163 (2003). https://doi.org/10.1016/S0022-2860(03)00256-4

    Article  CAS  Google Scholar 

  34. M. Ðaković and Z. Popović, Acta Cryst. C65, m361 (2009). https://doi.org/10.1107/S0108270109031989

    Article  CAS  Google Scholar 

  35. S. Yurdakul, A. Atac, E. Sahin and S. Ide, Vib. Spectrosc. 31, 41 (2003). https://doi.org/10.1016/S0924-2031(02)00066-8

    Article  CAS  Google Scholar 

  36. H. Icbudak, H. Olmez, O. Z. Yesilel, et al., J. Mol. Struct. 657, 255 (2003). https://doi.org/10.1016/S0022-2860(03)00404-6

    Article  CAS  Google Scholar 

  37. D. Sutton, Electronic Spectra of Transition Metal Complexes (McGraw-Hill, London, 1968).

    Google Scholar 

  38. Y. Asano and K. Yasukawa, Curr. Opin. Chem. Biol. 49, 76 (2019). https://doi.org/10.1016/j.cbpa.2018.10.020

    Article  CAS  PubMed  Google Scholar 

  39. N. N. Murthy, M. Mahroof-Tahir and K. D. Karlin, J. Am. Chem. Soc. 115, 10404 (1993). https://doi.org/10.1021/ja00075a084

    Article  CAS  Google Scholar 

  40. C. C. Chang and A. H. C. Huang, Plant Physiol. 67, 1003 (1981). https://doi.org/10.1104/pp.67.5.1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. P. J. Thureen, M. R. Narkewicz, F. C. Battaglia, et al., Pediatr. Res. 38, 775 (1995). https://doi.org/10.1203/00006450-199511000-00023

    Article  CAS  PubMed  Google Scholar 

  42. R. Biswas and M. Koley, World J. Chem. Educ. 5, 185 (2017). https://doi.org/10.12691/wjce-5-5-8

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank SAIF, Gauhati University for single crystal X-ray diffraction data.

Funding

Linkon Bharali thanks DST for providing Inspire scholarship (Registration number: 201500053206).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anshuman Gogoi.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anshuman Gogoi, Linkon Bharali Conversion of Glycine to Oxalate in Presence of CuSO4⋅5H2O and Isonicotinamide. Russ. J. Inorg. Chem. 67, 608–615 (2022). https://doi.org/10.1134/S0036023622050072

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023622050072

Keywords:

Navigation