Skip to main content
Log in

The Influence of Chlorides on the Spectral Properties of Ion-Exchange Layers of Photo-Thermo-Refractive Glass

  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The influence of chlorides on the spectral properties of silver nanoparticles in ion-exchange layers of photo-thermo-refractive glass is studied. It is shown that silver particles in ion-exchange layers of photo-thermo-refractive glass without chlorides are formed only in the UV-irradiated region and the refractive index does not change under UR irradiation. It is found that UV irradiation and subsequent heat treatment lead to the growth of NaF crystals on Ag–AgCl/NaCl core–shell nanoparticles formed in UV-irradiated ion-exchange photo-thermo-refractive glass with chlorides. The difference between the refractive indices of the irradiated and non-irradiated regions of photo-thermo-refractive glass with chlorine reaches Δn = –3 × 10–3. The investigation results demonstrate the possibility of recording amplitude and amplitude–phase g-ratings in ion-exchange layers of chloride-free and chloride-doped photo-thermo-refractive glasses, res-pectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. N. V. Nikonorov, E. I. Panysheva, I. V. Tunimanova, and A. V. Chukharev, Glass Phys. Chem. 27, 241 (2001). https://doi.org/10.1023/A:1011392301107

    Article  Google Scholar 

  2. Y. M. Sgibnev, N. V. Nikonorov, and A. I. Ignatiev, J. Lumin. 188, 172 (2017). https://doi.org/10.1016/j.jlumin.2017.04.028

    Article  Google Scholar 

  3. Y. M. Sgibnev, N. V. Nikonorov, and A. I. Ignatiev, J. Lumin. 176, 292 (2016). https://doi.org/10.1016/j.jlumin.2016.04.001

    Article  Google Scholar 

  4. Y. Sgibnev, B. Asamoah, N. Nikonorov, and S. Honkanen, J. Lumin. 226, 117411 (2020). https://doi.org/10.1016/j.jlumin.2020.117411

    Article  Google Scholar 

  5. J. E. Pierson and S. D. Stokey, US Patent No. 4017318 (1977).

  6. S. D. Stokey, G. H. Beal, and J. E. Pierson, J. Appl. Phys. 49, 5114 (1978). https://doi.org/10.1063/1.324458

    Article  ADS  Google Scholar 

  7. A. V. Dotsenko, A. M. Efremov, and V. K. Zakharov, Fiz. Khim. Stekla 11, 592 (1985).

    Google Scholar 

  8. L. B. Glebov, N. V. Nikonorov, E. I. Panysheva, G. T. Petrovskii, V. V. Savvin, I. V. Tunimanova, and V. A. Tsekhomskii, Sov. Phys. Dokl. 35, 878 (1990).

    ADS  Google Scholar 

  9. L. B. Glebov, N. V. Nikonorov, E. I. Panysheva, I. V. Tunimanova, V. V. Savvin, and V. A. Tsekhomskii, in Proceedings of the 7th All-Union Conference on Radiation Physics and Chemistry of Inorganic Materials (IF AN Latv. SSR, Riga, 1989), Part 2, p. 527.

  10. O. M. Efimov, L. B. Glebov, L. N. Glebova, K. C. Richardson, and V. I. Smirnov, Appl. Opt. 38, 619 (1999). https://doi.org/10.1364/ao.38.000619

    Article  ADS  Google Scholar 

  11. J. Lumeau and E. D. Zanotto, Int. Mater. Rev. 62, 348 (2017). https://doi.org/10.1080/09506608.2016.1264132

    Article  Google Scholar 

  12. N. Nikonorov, S. Ivanov, V. Dubrovin, and A. Ignatiev, Holographic Materials and Optical Systems (IntechOpen, London, 2017), p. 435. https://doi.org/10.5772/66116

    Book  Google Scholar 

  13. V. D. Dubrovin, A. I. Ignatiev, and N. V Nikonorov, Opt. Mater. Express 6, 1701 (2016). https://doi.org/10.1364/OME.6.001701

    Article  ADS  Google Scholar 

  14. V. Dubrovin, N. Nikonorov, and A. Ignatiev, Opt. Mater. Express 7, 2280 (2017). https://doi.org/10.1364/OME.7.002280

    Article  ADS  Google Scholar 

  15. J. J. Mock, D. R. Smith, and S. Schultz, Nano Lett. 3, 485 (2003). https://doi.org/10.1021/nl0340475

    Article  ADS  Google Scholar 

  16. E. M. Sgibnev, A. I. Ignatiev, N. V Nikonorov, A. M. Efimov, and E. S. Postnikov, J. Non. Cryst. Solids 378, 213 (2013). https://doi.org/10.1016/j.jnoncrysol.2013.07.010

    Article  ADS  Google Scholar 

  17. J. Lumeau, L. Glebova, V. Golubkov, E. D. Zanotto, and L. B. Glebov, Opt. Mater. 32, 139 (2009). https://doi.org/10.1016/j.optmat.2009.07.007

    Article  ADS  Google Scholar 

  18. Y. Sgibnev, N. Nikonorov, A. Ignatiev, V. Vasilyev, and M. Sorokina, Opt. Express 24, 4563 (2016). https://doi.org/10.1364/oe.24.004563

    Article  ADS  Google Scholar 

  19. L. B. Glebov, N. V. Nikonorov, E. I. Panysheva, I. V. Tunimanova, and M. V. Kharchenko, Opt. Spectrosc. 68, 471 (1990).

    ADS  Google Scholar 

  20. M. Colburn, in Proceedings of the 2020 IEEE International Electron Devices Meeting (IEDM, 2020), p. 33.3.1. https://doi.org/10.1109/IEDM13553.2020.9372103

  21. K. Yin, Z. He, J. Xiong, J. Zou, K. Li, and S. T. Wu, J. Phys. Photon. 3, 022010 (2021). https://doi.org/10.1088/2515-7647/abf02e

    Article  Google Scholar 

  22. Y. M. Sgibnev, N. V. Nikonorov, V. N. Vasilev, and A. I. Ignatiev, J. Light. Technol. 33, 3730 (2015). https://doi.org/10.1109/JLT.2015.2456239

    Article  ADS  Google Scholar 

  23. Y. Sgibnev, N. Nikonorov, and A. Ignatiev, Appl. Sci. 11, 3891 (2021). https://doi.org/10.3390/app11093891

    Article  Google Scholar 

  24. J. M. White and P. F. Heidrich, Appl. Opt. 15, 151 (1976). https://doi.org/10.1364/AO.15.000151

    Article  ADS  Google Scholar 

  25. A. L. Patterson, Phys. Rev. 56, 978 (1939). https://doi.org/10.1103/PhysRev.56.978

    Article  ADS  Google Scholar 

  26. S. Devesa, A. P. Rooney, L. C. Costa, M. P. Graça, and D. Cooper, Mater. Sci. Eng. B 263, 114830 (2021). https://doi.org/10.1016/j.mseb.2020.114830

    Article  Google Scholar 

  27. D. Agency, M. M. Ndamitso, A. S. Abdulkareem, J. T. Oladejo, D. T. Shuaib, A. K. Mohammed, and A. Sumaila, Adv. Natl. Sci. Nanosci. Nanotechnol. 10, 045013 (2019). https://doi.org/10.1088/2043-6254/ab52f7

    Article  ADS  Google Scholar 

  28. I. N. Leontyev, A. B. Kuriganova, M. Allix, A. Rakhmatullin, P. E. Timoshenko, O. A. Maslova, A. S. Mikheykin, and N. V. Smirnova, Phys. Status Solidi 255, 1800240 (2018). https://doi.org/10.1002/pssb.201800240

    Article  Google Scholar 

  29. A. O. Bokuniaeva and A. S. Vorokh, J. Phys.: Conf. Ser. 1410, 012057 (2019). https://doi.org/10.1088/1742-6596/1410/1/012057

    Article  Google Scholar 

  30. G. W. Arnold, J. Appl. Phys. 46, 4466 (1975). https://doi.org/10.1063/1.321422

    Article  ADS  Google Scholar 

  31. H. Hövel, S. Fritz, A. Hilger, and U. Kreibig, Phys. Rev. B 48, 18178 (1993). https://doi.org/10.1103/PhysRevB.48.18178

    Article  ADS  Google Scholar 

  32. X. Wang, G. Zhang, G. Li, R. Lou, Z. Sun, X. Xie, W. Li, and G. Cheng, Micromachines 12, 615 (2021). https://doi.org/10.3390/mi12060615

    Article  Google Scholar 

  33. J. A. Jiménez, M. Sendova, and H. Liu, J. Lumin. 131, 535 (2011). https://doi.org/10.1016/j.jlumin.2010.09.023

    Article  Google Scholar 

  34. T. Findakly, Opt. Eng. 24, 244 (1985). https://doi.org/10.1117/12.7973463

    Article  ADS  Google Scholar 

  35. B. Pantchev and Z. Nikolov, IEEE J. Quantum Electron. 29, 2459 (1993). https://doi.org/10.1109/3.247703

    Article  ADS  Google Scholar 

  36. H. Sanaeepur, A. E. Amooghin, A. Kargari, M. Omidkhah, A. F. Ismail, and S. Ramakrishna, Iran. J. Chem. Eng. 16, 70 (2019).

    Google Scholar 

  37. L. Zhang, Y. Xia, X. Shen, and W. Wei, J. Mater. Res. 33, 2434 (2018). https://doi.org/10.1557/jmr.2018.228

    Article  ADS  Google Scholar 

  38. F. Wang, Z. Li, H. Wang, M. Chen, C. Zhang, P. Ning, and H. He, Nano Res. 15, 452 (2022). https://doi.org/10.1007/s12274-021-3501-1

    Article  ADS  Google Scholar 

  39. N. V. Nikonorov, A. I. Sidorov, V. A. Tsekhomski, and K. E. Lazareva, Condens. Matter Spectrosc. 107, 705 (2009). https://doi.org/10.1134/S0030400X09110058

    Article  Google Scholar 

  40. Mie Calculator. https://physics.itmo.ru/ru/mie#/materials.

  41. Z. Fu, J. Zhao, Y. Dai, and R. Liu, J. Nucl. Mater. 543, 152560 (2021). https://doi.org/10.1016/j.jnucmat.2020.152560

    Article  Google Scholar 

  42. J. Lumeau, K. Chamma, L. Glebova, and L. B. Glebov, J. Non. Cryst. Solids 405, 188 (2014). https://doi.org/10.1016/j.jnoncrysol.2014.09.019

    Article  ADS  Google Scholar 

  43. Y. Zhang, X. Wang, G. Zhang, R. Stoian, and G. Cheng, Nanomaterials 11, 1432 (2021). https://doi.org/10.3390/nano11061432

    Article  Google Scholar 

  44. L. A. Siiman, J. Lumeau, L. Canioni, and L. B. Glebov, Opt. Lett. 34, 2572 (2009). https://doi.org/10.1364/ol.34.002572

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to R.K. Nuryev for performing X-ray diffraction analysis.

Funding

This work was supported by the Russian Science Foundation (project no. 20-19-00559).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Marasanov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Basieva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marasanov, D.V., Sgibnev, Y.M. & Nikonorov, N.V. The Influence of Chlorides on the Spectral Properties of Ion-Exchange Layers of Photo-Thermo-Refractive Glass. Opt. Spectrosc. 130, 402–408 (2022). https://doi.org/10.1134/S0030400X22070074

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X22070074

Keywords:

Navigation