Skip to main content
Log in

Inductive-resonant theory of nonradiative transitions in lanthanide and transition metal ions (review)

  • Condensed-Matter Spectroscopy
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The review is devoted to the theory of nonradiative transitions in tricharged ions of lanthanides and transition metals in the condensed phase, which was proposed in 1971. The theory is based on the phenomenon of nonradiative energy transfer from an electronically excited ion to surrounding molecular groups with excitation of resonant vibrational states and makes it possible to calculate the nonradiative transition rate constant (k nr) by a formula that is similar to the Förster formula. The primary emphasis is placed on recent experimental works that directly confirm the proposed theory. It is shown that the theory satisfactorily quantitatively accounts for (i) the effect of deuteration of molecular groups surrounding ions on k nr, (ii) the energy gap law, and (iii) the dependence of k nr on the distance between the ion and deactivating groups. Furthermore, it is shown that (iv) the theory makes it possible to satisfactorily quantitatively calculate in the dipole-dipole approximation the constant k nr of the electronic transition based on the knowledge of the radiative rate constant and the vibrational absorption spectra of molecular groups in the range of overlap with the luminescence spectrum of the ion; (v) the temperature dependence of k nr; and (vi) the anomalously low k nr in the case where the corresponding radiative transition is caused by the magnetic rather than the electric dipole. Literature data are presented that directly experimentally support the proposed theory of nonradiative transitions. In addition, works where this approach is used to calculate k nr of transitions in laser media are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. A. Riseberg and M. J. Weber, in Progress in Optics, Ed. by E. Wolf (North-Holland, Amsterdam, 1976), Vol. XIV, p. 91.

    Google Scholar 

  2. R. Englman, Non-Radiative Decay of Ions and Molecules in Solids (North Holland, Amsterdam, 1979).

    Google Scholar 

  3. Radiationless Processes, Ed. by B. di Bartolo (Plenum, New York, 1980).

    Google Scholar 

  4. A. A. Kaminskii, L. K. Aminov, V. L. Ermolaev, et al., Physics and Spectroscopy of Laser Crystals (Nauka, Moscow, 1986.) [in Russian], Part 3.

    Google Scholar 

  5. E. S. Medvedev and V. I. Osherov, Radiationless Transitions in Polyatomic Molecules (Springer, Berlin, 1995).

    Book  Google Scholar 

  6. T. T. Basiev, A. Yu. Derkachev, Yu. V. Orlovskii, V. V. Osiko, and A. M. Prokhorov, Trudy Inst. Obshch. Fiz. Ross. Akad. Nauk 46, 3 (1994).

    Google Scholar 

  7. E. B. Sveshnikova and V. L. Ermolaev, Opt. Spektrosk. 30(2), 379 (1971).

    Google Scholar 

  8. E. B. Sveshnikova and V. L. Ermolaev, Izv. Akad. Nauk SSSR, Ser. Fiz. 35(7), 1481 (1971).

    Google Scholar 

  9. V. L. Ermolaev and E. B. Sveshnikova, Chem. Phys. Lett. 23(3), 349 (1973).

    Article  ADS  Google Scholar 

  10. Th. Förster, Ann. Phys. N. F. 2(1–2), 55 (1948).

    Article  MATH  Google Scholar 

  11. M. D. Galanin and I. M. Frank, Zh. Eksp. Teor. Fiz. 21(2), 114 (1951).

    Google Scholar 

  12. D. L. Dexter, J. Chem. Phys. 21(5), 836 (1953).

    Article  ADS  Google Scholar 

  13. E. N. Bodunov and E. B. Sveshnikova, Opt. Spektrosk. 36(2), 196 (1974).

    Google Scholar 

  14. E. N. Bodunov, Opt. Spektrosk. 40(5), 942 (1976).

    Google Scholar 

  15. V. L. Ermolaev, E. B. Sveshnikova, and E. N. Bodunov, Usp. Fiz. Nauk 166(3), 279 (1996).

    Article  Google Scholar 

  16. V. L. Ermolaev, E. N. Bodunov, E. B. Sveshnikova, and T. A. Shakhverdov, Nonradiative Transfer of Electronic Excitation Energy (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  17. E. B. Sveshnikova, Doctoral Dissertation (GOI im. S.I. Vavilova, Leningrad, 1984).

  18. J. L. Kropp and M. W. Windsor, J. Chem. Phys. 42, 1599 (1965).

    Article  ADS  Google Scholar 

  19. T. R. Thomas, R. J. Watts, and G. A. Crosby, J. Chem. Phys. 59, 2123 (1973).

    Article  ADS  Google Scholar 

  20. J. Van Houten and R. J. Watts, J. Am. Chem. Soc. 97, 3843 (1975).

    Article  Google Scholar 

  21. W. R. Brown and J. G. Vos, Coord. Chem. Rev. 219–221, 761 (2001).

    Article  Google Scholar 

  22. C. B. Laynew, W. N. Lowdermilk, and M. J. Weber, Phys. Rev. 16, 10 (1977).

    Article  ADS  Google Scholar 

  23. V. L. Ermolaev and E. B. Sveshnikova, Usp. Khim. 63(11), 962 (1994) [Russ. Chem. Rev. 63 (11), 905 (1994)].

    Google Scholar 

  24. E. B. Sveshnikova and N. T. Timofeev, Opt. Spektrosk. 48(3), 503 (1980) [Opt. Spectrosc. 48 (3), 276 (1980)].

    Google Scholar 

  25. E. B. Sveshnikova, N. T. Timofeev, and V. V. Zolotarev, Izv. Akad. Nauk SSSR, Ser. Fiz. 44(4), 722 (1980).

    Google Scholar 

  26. V. L. Ermolaev, E. B. Sveshnikova, and V. S. Tachin, Opt. Spektrosk. 46(2), 343 (1976).

    Google Scholar 

  27. E. B. Sveshnikova, Izv. Akad. Nauk SSSR, Ser. Fiz. 39(9), 1801 (1975).

    Google Scholar 

  28. P. St. May and F. S. Richardson, Chem. Phys. Lett. 179(3), 277 (1991).

    Article  ADS  Google Scholar 

  29. E. B. Sveshnikova and S. P. Naumov, Opt. Spektrosk. 45(3), 505 (1978) [Opt. Spectrosc. 45 (3), 283 (1978)].

    Google Scholar 

  30. E. B. Sveshnikova, A. P. Serov, and V. P. Kondakova, Opt. Spektrosk. 39(2), 285 (1975).

    Google Scholar 

  31. A. Aharoni, D. Oron, U. Banin, E. Rabani, and J. Jortner, Phys. Rev. Lett. 100(5), 057404 (2008).

    Article  ADS  Google Scholar 

  32. A. Beeby, I. M. Clarkson, R. S. Dickins, et al., J. Chem. Soc., Perkin Trans. 2, 493 (1999).

    Google Scholar 

  33. W. De W. Horrocks Jr. and D. R. Sudnick, Acc. Chem. Res. 14, 384 (1981).

    Article  Google Scholar 

  34. S. P. Naumov and E. B. Sveshnikova, Opt. Spektrosk. 45(5), 903 (1978) [Opt. Spectrosc. 45 (5), 761 (1978)].

    Google Scholar 

  35. V. P. Gapontsev, Yu. E. Sverchkov, A. K. Gromov, A. A. Izyneev, and V. B. Kravchenko, Pis’ma Zh. Eksp. Teor. Fiz. 29, 234 (1979) [JETP Lett. 29, 210 (1979)].

    Google Scholar 

  36. V. P. Gapontsev, A. A. Izyneev, Yu. E. Sverchkov, and M. R. Syrtlanov, Kvantovaya Elektron. 8(8), 1824 (1981).

    Google Scholar 

  37. A. G. Avanesov, T. T. Basiev, Yu. K. Voron’ko, et al., Zh. Eksp. Teor. Fiz. 77, 1771 (1979) [Sov. Phys. JETP 50, 886 (1979)].

    Google Scholar 

  38. V. P. Gapontsev, M. R. Sirtlanov, and W. Yen, J. Lumin. 31/32, 201 (1984).

    Article  Google Scholar 

  39. E. B. Sveshnikova and S. P. Naumov, Opt. Spektrosk. 47(8), 502 (1979) [Opt. Spectrosc. 47 (8), 279 (1979)].

    Google Scholar 

  40. H. G. Lipson, D. Bendow, N. R. Massa, and S. S. Mitra, Phys. Rev. B 13, 2614 (1976).

    Article  ADS  Google Scholar 

  41. M. P. Miller and J. C. Wright, J. Chem. Phys. 71, 324 (1979).

    Article  ADS  Google Scholar 

  42. E. B. Sveshnikova, A. A. Stroganov, and N. T. Timofeev, Opt. Spektrosk. 64(1), 73 (1988).

    ADS  Google Scholar 

  43. A. A. Kamarzin, A. A. Mamedov, V. A. Smirnov, A. A. Sobol’, V. V. Sokolov, and I. A. Shcherbakov, Kvantovaya Elektron. 10(8), 1560 (1983).

    Google Scholar 

  44. E. B. Sveshnikova, V. V. Sokolov, and A. A. Stroganov, Opt. Spektrosk. 63(1), 141 (1987).

    Google Scholar 

  45. E. B. Sveshnikova, N. T. Timofeev, A. O. Ivanov, S. G. Lunter, and Yu. K. Fedorov, Opt. Spektrosk. 54(2), 259 (1983).

    Google Scholar 

  46. E. B. Sveshnikova, A. A. Stroganov, and L. N. Urusovskaya, Opt. Spektrosk. 63(6), 1047 (1987).

    Google Scholar 

  47. M. A. El’yashevich, Spectra of Rare-Earth Elements(Gostekhizdat, Moscow, 1953) [in Russian].

    Google Scholar 

  48. C. Gorlier-Walrand and J. Godemont, J. Chem. Phys. 67(8), 3655 (1977).

    Article  ADS  Google Scholar 

  49. M. J. Weber, Phys. Rev. B 8(1), 54 (1973).

    Article  ADS  Google Scholar 

  50. E. D. Reed, Jr. and H. W. Moos, Phys. Rev. B 8(3), 988 (1973).

    Article  ADS  Google Scholar 

  51. A. G. Joly, W. Chen, J. Zhang, and Sh. Wang, J. Lumin. 126, 491 (2007).

    Article  Google Scholar 

  52. E. B. Sveshnikova and S. P. Naumov, Opt. Spektrosk. 44(1), 127 (1978).

    Google Scholar 

  53. V. L. Ermolaev and E. B. Sveshnikova, J. Lumin. 20, 387 (1979).

    Article  Google Scholar 

  54. Y. Yang, W. von der Osten, and F. Lüty, Phys. Rev. B 32(4), 2724 (1985).

    Article  ADS  Google Scholar 

  55. Y. Yang and F. Lüty, J. Phys. 46, Colloque C7. Suppl. au 10, 287 (1985).

  56. Y. Yang and F. Lüty, Phys. Rev. Lett. 51(5), 419 (1983).

    Article  ADS  Google Scholar 

  57. W. Gellermann and F. Lüty, Opt. Commun. 72(3–4), 214 (1989).

    Article  ADS  Google Scholar 

  58. St. A. Payne and C. Bibeau, J. Lumin. 79, 143 (1998).

    Article  Google Scholar 

  59. C. Bibeau, S. A. Payne, and H. T. Powell, J. Opt. Soc. Am. B 12(10), 1981 (1995).

    Article  ADS  Google Scholar 

  60. F. Quochi, R. Orru, F. Cordella, et al., J. Appl. Phys. 99, 053 520 (2006).

    Article  Google Scholar 

  61. E. B. Sveshnikova, P. A. Shakhverdov, T. A. Shakhverdov, et al., Opt. Spektrosk. 95(6), 961 (2003) [Opt. Spectrosc. 95 (6), 898 (2003)].

    Article  Google Scholar 

  62. V. L. Ermolaev and E. B. Sveshnikova, Opt. Spektrosk. 95(6), 971 (2003) [Opt. Spectrosc. 95 (6), 908 (2003)].

    Article  Google Scholar 

  63. V. L. Ermolaev and E. B. Sveshnikova, Acta Phys. Polon. A 95(3), 299 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. L. Ermolaev.

Additional information

Original Russian Text © E.B. Sveshnikova, V.L. Ermolaev, 2011, published in Optika i Spektroskopiya, 2011, Vol. 111, No. 1, pp. 38–54.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sveshnikova, E.B., Ermolaev, V.L. Inductive-resonant theory of nonradiative transitions in lanthanide and transition metal ions (review). Opt. Spectrosc. 111, 34–50 (2011). https://doi.org/10.1134/S0030400X11070186

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X11070186

Keywords

Navigation