Skip to main content
Log in

Poised RNA polymerase II and master regulation in Metazoa

  • Reviews
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

In this review, we discuss mechanisms of the transcription pausing of RNA polymerase II and its poised state. The important features of poised promoters and chromatin are briefly described. The role of transcription pausing as a discrete and important stage in the regulation of expression of master genes, which control stem-cell differentiation, cell lineage and development in Metazoa, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PolII:

RNA polymerase II

TSS:

transcription start site

ESCs:

embryonic stem cells

CTD:

C-terminal domain of RNA polymerase II

References

  1. Williams L.H., Fromm G., Gokey N.G., et al. 2015. Pausing of RNA polymerase II regulates mammalian developmental potential through control of signaling networks. Mol. Cell. 58, 311–322.

    Article  CAS  PubMed  Google Scholar 

  2. Xie W., Ling T., Zhou Y., et al. 2012. The chromatin remodeling complex NuRD establishes the poised state of rRNA genes characterized by bivalent histone modifications and altered nucleosome positions. Proc. Natl. Acad. Sci. U. S. A. 109, 8161–8166.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Lim P.S., Li J., Holloway A.F., Rao S. 2013. Epigenetic regulation of inducible gene expression in the immune system. Immunology. 139, 285–293.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Kwak H., Lis J.T. 2013. Control of transcriptional elongation. Annu. Rev. Genet. 47, 483–508.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Gilmour D.S., Lis J.T. 1986. RNA polymerase II interacts with the promoter region of the noninduced hsp70 gene in Drosophila melanogaster cells. Mol. Cell. Biol. 6, 3984–3989.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Rougvie A.E., Lis J.T. 1988. The RNA polymerase II molecule at the 5' end of the uninduced hsp70 gene of D. melanogaster is transcriptionally engaged. Cell. 54, 795–804.

    CAS  PubMed  Google Scholar 

  7. Rougvie A.E., Lis J.T. 1990. Postinitiation transcriptional control in Drosophila melanogaster. Mol. Cell. Biol. 10, 6041–6045.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Adelman K., Lis J.T. 2012. Promoter-proximal pausing of RNA polymerase II: Emerging roles in metazoans. Nat. Rev. Genet. 13, 720–731.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Nechaev S., Adelman K. 2011. Pol II waiting in the starting gates: Regulating the transition from transcription initiation into productive elongation. Biochim. Biophys. Acta. 1809, 34–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Brookes E., Pombo A. 2009. Modifications of RNA polymerase II are pivotal in regulating gene expression states. EMBO Rep. 10, 1213–1219.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Core L.J., Lis J.T. 2008. Transcription regulation through promoter-proximal pausing of RNA polymerase II. Science. 319, 1791–1792.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Gaertner B., Zeitlinger J. 2014. RNA polymerase II pausing during development. Development. 141, 1179–1183.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Jonkers I., Lis J.T. 2015. Getting up to speed with transcription elongation by RNA polymerase II. Nat. Rev. Mol. Cell. Biol. 16, 167–177.

    Article  CAS  PubMed  Google Scholar 

  14. Heinz S., Romanoski C.E., Benner C., Glass C.K. 2015. The selection and function of cell type-specific enhancers. Nat. Rev. Mol. Cell. Biol. 16, 144–154.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Chan S.S., Kyba M. 2013. What is a master regulator? J. Stem Cell Res. Ther. 3, e114. doi 10.4172/21577633.1000e114

    Google Scholar 

  16. Oestreich K.J., Weinmann A.S. 2012. Master regulators or lineage-specifying? Changing views on CD4+ T cell transcription factors. Nat. Rev. Immunol. 12, 799–804.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Xu J., Smale S.T. 2012. Designing an enhancer landscape. Cell. 151, 929–931.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Buckingham M., Rigby P.W. 2014. Gene regulatory networks and transcriptional mechanisms that control myogenesis. Dev. Cell. 28, 225–238.

    Article  CAS  PubMed  Google Scholar 

  19. Ostuni R., Natoli G. 2013. Lineages, cell types and functional states: A genomic view. Curr. Opin. Cell Biol. 25, 759–764.

    Article  CAS  PubMed  Google Scholar 

  20. Rizzino A. 2009. Sox2 and Oct-3/4: A versatile pair of master regulators that orchestrate the self-renewal and pluripotency of embryonic stem cells. Wiley Interdiscipl. Rev. Syst. Biol. Med. 1, 228–236.

    Article  CAS  Google Scholar 

  21. Trompouki E., Bowman T.V., Lawton L.N., et al. 2011. Lineage regulators direct BMP and Wnt pathways to cell-specific programs during differentiation and regeneration. Cell. 147, 577–589.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Mullen A.C., Orlando D.A., Newman J.J., et al. 2011. Master transcription factors determine cell-type-specific responses to TGF-beta signaling. Cell. 147, 565–576.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Massague J., Xi Q. 2012. TGF-beta control of stem cell differentiation genes. FEBS Lett. 586, 1953–1958.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Calero-Nieto F.J., Ng F.S., Wilson N.K., et al. 2014. Key regulators control distinct transcriptional programmes in blood progenitor and mast cells. EMBO J. 33, 1212–1226.

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Egloff S., Murphy S. 2008. Cracking the RNA polymerase II CTD code. Trends Genet. 24, 280–288.

    Article  CAS  PubMed  Google Scholar 

  26. Yamaguchi Y., Shibata H., Handa H. 2013. Transcription elongation factors DSIF and NELF: Promoterproximal pausing and beyond. Biochim. Biophys. Acta. 1829, 98–104.

    Article  CAS  PubMed  Google Scholar 

  27. Guo J., Price D.H. 2013. RNA polymerase II transcription elongation control. Chem. Rev. 113, 8583–8603.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Thomas M.C., Chiang C.M. 2006. The general transcription machinery and general cofactors. Crit. Rev. Biochem. Mol. Biol. 41, 105–178.

    Article  CAS  PubMed  Google Scholar 

  29. Gaertner B., Johnston J., Chen K., et al. 2012. Poised RNA polymerase II changes over developmental time and prepares genes for future expression. Cell Rep. 2, 1670–1683.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Lagha M., Bothma J.P., Esposito E., et al. 2013. Paused Pol II coordinates tissue morphogenesis in the Drosophila embryo. Cell. 153, 976–987.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Kwak H., Fuda N.J., Core L.J., Lis J.T. 2013. Precise maps of RNA polymerase reveal how promoters direct initiation and pausing. Science. 339, 950–953.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Juven-Gershon T., Hsu J.Y., Theisen J.W., Kadonaga J.T. 2008. The RNA polymerase II core promoter: The gateway to transcription. Curr. Opin. Cell Biol. 20, 253–259.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Lenhard B., Sandelin A., Carninci P. 2012. Metazoan promoters: Emerging characteristics and insights into transcriptional regulation. Nat. Rev. Genet. 13, 233–245.

    CAS  PubMed  Google Scholar 

  34. Saunders A., Ashe H.L. 2013. Taking a pause to reflect on morphogenesis. Cell. 153, 941–943.

    Article  CAS  PubMed  Google Scholar 

  35. Samarakkody A., Abbas A., Scheidegger A., et al. 2015. RNA polymerase II pausing can be retained or acquired during activation of genes involved in the epithelial to mesenchymal transition. Nucleic Acids Res. 43 (8), 3938–3949.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Lam M.T., Li W., Rosenfeld M.G., Glass C.K. 2014. Enhancer RNAs and regulated transcriptional programs. Trends Biochem. Sci. 39, 170–182.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Maston G.A., Landt S.G., Snyder M., Green M.R. 2012. Characterization of enhancer function from genome-wide analyses. Annu. Rev. Genomics Hum. Genet. 13, 29–57.

    Article  CAS  PubMed  Google Scholar 

  38. Li Q., Lian S., Dai Z., Xiang Q., Dai X. 2013. BGDB: A database of bivalent genes. Database (Oxford). 2013, bat057.

  39. Pan G., Tian S., Nie J., et al. 2007. Whole-genome analysis of histone H3 lysine 4 and lysine 27 methylation in human embryonic stem cells. Cell Stem Cell. 1, 299–312.

    Article  CAS  PubMed  Google Scholar 

  40. Razin S.V., Gavrilov A.A., Ulyanov S.V. 2015. Transcription-controlling regulatory elements of the eukaryotic genome. Mol. Biol. (Moscow). 49, 212–223.

    Article  CAS  Google Scholar 

  41. Xi Q., Wang Z., Zaromytidou A.I., et al. 2011. A poised chromatin platform for TGF-beta access to master regulators. Cell. 147, 1511–1524.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Chai X., Nagarajan S., Kim K., Lee K., Choi J.K. 2013. Regulation of the boundaries of accessible chromatin. PLoS Genet. 9, e1003778.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Yamamoto J., Hagiwara Y., Chiba K., Isobe T., Narita T., Handa H., Yamaguchi Y. 2014. DSIF and NELF interact with Integrator to specify the correct post-transcriptional fate of snRNA genes. Nat.Commun. 5, 4263.

    CAS  PubMed  Google Scholar 

  44. Castelo-Branco G., Amaral P.P., Engstrom P.G., Robson S.C., Marques S.C., Bertone P., Kouzarides T. 2013. The non-coding snRNA 7SK controls transcriptional termination, poising, and bidirectionality in embryonic stem cells. Genome Biol. 14, R98.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Chaffer C.L., Marjanovic N.D., Lee T., et al. 2013. Poised chromatin at the ZEB1 promoter enables breast cancer cell plasticity and enhances tumorigenicity. Cell. 154, 61–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Marjanovic N.D., Weinberg R.A., Chaffer C.L. 2013. Poised with purpose: Cell plasticity enhances tumorigenicity. Cell Cycle. 12, 2713–2714.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Oram S.H., Thoms J., Sive J.I., et al. 2013. Bivalent promoter marks and a latent enhancer may prime the leukaemia oncogene LMO1 for ectopic expression in T-cell leukaemia. Leukemia. 27, 1348–1357.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Eldar A., Elowitz M.B. 2010. Functional roles for noise in genetic circuits. Nature. 467, 167–173.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. N. Kashkin.

Additional information

Original Russian Text © K.N. Kashkin, E.D. Sverdlov, 2015, published in Molekulyarnaya Biologiya, 2015, Vol. 49, No. 6, pp. 905–914.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kashkin, K.N., Sverdlov, E.D. Poised RNA polymerase II and master regulation in Metazoa. Mol Biol 49, 810–817 (2015). https://doi.org/10.1134/S0026893315060114

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893315060114

Keywords

Navigation