Skip to main content
Log in

Bacterial synthesis, purification, and solubilization of transmembrane segments of ErbB family receptors

  • Structural and Functional Analysis of Biopolymers and Their Complexes
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

ErbB is a family of epidermal growth factor receptors representing an important class of receptor tyrosine kinases that play a leading role in cellular growth, development, and differentiation. Transmembrane domains of these receptors transduce biochemical signals across the plasma membrane via lateral homo- and heterodimerization. The relatively small size of ErbB transmembrane domain complexes with detergents or lipids makes it possible to study their detailed spatial structure using three-dimensional heteronuclear high-resolution NMR spectroscopy. Here, we describe an efficient expression system and a purification procedure for preparative-scale production of transmembrane peptides from all four ErbB proteins—ErbB1, ErbB2, ErbB3, and ErbB4—for the purpose of structural studies. The recombinant peptides were produced in Escherichia coli BL21(DE3)pLysS cells as N-terminal extensions of thioredoxin A. The fusion proteins were cleaved with the light chain of human enterokinase. Several (10–30) milligrams of purified isotope-labeled transmembrane peptides were isolated using a simple and convenient procedure, which consists of consecutive steps of immobilized metal affinity chromatography and cation-exchange chromatography. The purified peptides were reconstituted in a lipid/detergent environment (micelles or bicelles) and characterized using dynamic light scattering and CD and NMR spectroscopy. The data obtained indicate that purified ErbB transmembrane peptides are suitable for structural and dynamic studies of their homo- and heterodimer complexes using high resolution NMR spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ErbB:

epidermal growth factor receptor family

DHPC:

dehexanoyl-phosphatidylcholine

DMPC:

dimyristoyl-phosphatidylcholine

DPC:

dodecyl-phosphocholine

IPTG:

isopropyl-β-D-thiogalactoside

RTK:

receptor tyrosine kinase

TM:

transmembrane (protein domain)

IMAC:

immobilized metal affinity chromatography

TrxA:

thioredoxin A

References

  1. Olayioye M.A., Neve R.M., Lane H.A., Hynes N.E. 2000. The ErbB signaling network: Receptor heterodimerization in development and cancer. EMBO J. 19, 3159–3167.

    Article  PubMed  CAS  Google Scholar 

  2. Yarden Y., Sliwkowski M.X. 2001. Untangling the ErbB signalling network. Nature Rev. Mol. Cell Biol. 2, 127–137.

    Article  CAS  Google Scholar 

  3. Schlessinger J. 2000. Cell signaling by receptor tyrosine kinases. Cell. 103, 211–225.

    Article  PubMed  CAS  Google Scholar 

  4. Yarden Y., Ullrich A. 1988. Growth factor receptor tyrosine kinases. Annu. Rev. Biochem. 57, 443–478.

    Article  PubMed  CAS  Google Scholar 

  5. Fantl W.J., Johnson D.E., Williams L.T. 1993. Signalling by receptor tyrosine kinases. Annu. Rev. Biochem. 62, 453–481.

    Article  PubMed  CAS  Google Scholar 

  6. Rajkumar T., Gullick W.J. 1994. The type I growth factor receptors in human breast cancer. Breast Cancer Res. Treat. 29, 3–9.

    Article  PubMed  CAS  Google Scholar 

  7. Warren C.M., Landgraf R. 2006. Signaling through ERBB receptors: Multiple layers of diversity and control. Cell. Signal. 18, 923–933.

    Article  PubMed  CAS  Google Scholar 

  8. Moriki T., Maruyama H., Maruyama I.N. 2001. Activation of preformed EGF receptor dimers by ligand-induced rotation of the transmembrane domain. J. Mol. Biol. 311, 1011–1026.

    Article  PubMed  CAS  Google Scholar 

  9. Holbro T., Civenni G., Hynes N.E. 2003. The ErbB receptors and their role in cancer progression. Exp. Cell Res. 284, 99–110.

    Article  PubMed  CAS  Google Scholar 

  10. Woodburn J.R. 1999. The epidermal growth factor receptor and its inhibition in cancer therapy. Pharmacol. Ther. 82, 241–250.

    Article  PubMed  CAS  Google Scholar 

  11. Muraoka-Cook R.S., Feng S.M., Strunk K.E., Earp H.S. III. 2008. ErbB4/HER4: Role in mammary gland development, differentiation and growth inhibition. J. Mammary Gland Biol. Neoplasia. 13, 235–246.

    Article  PubMed  Google Scholar 

  12. Barnes N.L., Khavari S., Boland G.P., Cramer A., Knox W.F., Bundred N.J. 2005. Absence of HER4 expression predicts recurrence of ductal carcinoma in situ of the breast. Clin. Cancer Res. 11, 2163–2168.

    Article  PubMed  CAS  Google Scholar 

  13. Naresh A., Long W., Vidal G.A., Wimley W.C., Marrero L., Sartor C.I., Tovey S., Cooke T.G., Bartlett J.M., Jones F.E. 2006. The ERBB4/HER4 intracellular domain 4ICD is a BH3-only protein promoting apoptosis of breast cancer cells. Cancer Res. 66, 6412–6420.

    Article  PubMed  CAS  Google Scholar 

  14. Schlessinger J. 2002. Ligand-induced, receptor-mediated dimerization and activation of EGF receptor. Cell. 110, 669–672.

    Article  PubMed  CAS  Google Scholar 

  15. Tao R.H., Maruyama I.N. 2008. All EGF(ErbB) receptors have preformed homo- and heterodimeric structures in living cells. J. Cell Sci. 121, 3207–3217.

    Article  PubMed  CAS  Google Scholar 

  16. Bennasroune A., Fickova M., Gardin A., Dirrig-Grosch S., Aunis D., Cremel G., Hubert P. 2004. Transmembrane peptides as inhibitors of ErbB receptor signaling. Mol. Biol. Cell. 15, 3464–3474.

    Article  PubMed  CAS  Google Scholar 

  17. Duneau J.P., Vegh A.P., Sturgis J.N. 2007. A dimerization hierarchy in the transmembrane domains of the HER receptor family. Biochemistry. 46, 2010–2019.

    Article  PubMed  CAS  Google Scholar 

  18. Mendrola J.M., Berger M.B., King M.C., Lemmon M.A. 2002. The single transmembrane domains of ErbB receptors self-associate in cell membranes. J. Biol. Chem. 277, 4704–4712.

    Article  PubMed  CAS  Google Scholar 

  19. Li E., Hristova K. 2006. Role of receptor tyrosine kinase transmembrane domains in cell signaling and human pathologies. Biochemistry. 45, 6241–6251.

    Article  PubMed  CAS  Google Scholar 

  20. Partridge A.W., Therien A.G., Deber C.M. 2002. Polar mutations in membrane proteins as a biophysical basis for disease. Biopolymers. 66, 350–358.

    Article  PubMed  CAS  Google Scholar 

  21. Frank B., Hemminki K., Wirtenberger M., Bermejo J.L., Bugert P., Klaes R., Schmutzler R.K., Wappenschmidt B., Bartram C.R., Burwinkel B. 2005. The rare ERBB2 variant Ile654Val is associated with an increased familial breast cancer risk. Carcinogenesis. 26, 643–647.

    Article  PubMed  CAS  Google Scholar 

  22. Escher C., Cymer F., Schneider D. 2009. Two GxxxG-like motifs facilitate promiscuous interactions of the human ErbB transmembrane domains. J. Mol. Biol. 389, 10–16.

    Article  PubMed  CAS  Google Scholar 

  23. Mackenzie K.R. 2006. Folding and stability of alphahelical integral membrane proteins. Chem. Rev. 106, 1931–1977.

    Article  PubMed  CAS  Google Scholar 

  24. Russ W.P., Engelman D.M. 2000. The GxxxG motif: a framework for transmembrane helix-helix association. J. Mol. Biol. 296, 911–919.

    Article  PubMed  CAS  Google Scholar 

  25. Curran A.R., Engelman D.M. 2003. Sequence motifs, polar interactions and conformational changes in helical membrane proteins. Curr. Opin. Struct. Biol. 13, 412–417.

    Article  PubMed  CAS  Google Scholar 

  26. Enosh A., Fleishman S.J., Ben-Tal N., Halperin D. 2007. Prediction and simulation of motion in pairs of transmembrane alpha-helices. Bioinformatics. 23, 212–218.

    Article  Google Scholar 

  27. Smith S.O., Smith C., Shekar S., Peersen O., Ziliox M., Aimoto S. 2002. Transmembrane interactions in the activation of the Neu receptor tyrosine kinase. Biochemistry. 41, 9321–9332.

    Article  PubMed  CAS  Google Scholar 

  28. Fleishman S.J., Schlessinger J., Ben-Tal N. 2002. A putative molecular-activation switch in the transmembrane domain of erbB2. Proc. Natl. Acad. Sci. U. S. A. 99, 15937–15940.

    Article  PubMed  CAS  Google Scholar 

  29. Jiang G., Hunter T. 1999. Receptor signaling: When dimerization is not enough. Curr. Biol. 9, 568–571.

    Article  Google Scholar 

  30. Carpenter E.P., Beis K., Cameron A.D., Iwata S. 2008. Overcoming the challenges of membrane protein crystallography. Curr. Opin. Struct. Biol. 18, 581–586.

    Article  PubMed  CAS  Google Scholar 

  31. Junge F., Schneider B., Reckel S., Schwarz D., Dotsch V., Bernhard F. 2008. Large-scale production of functional membrane proteins. Cell. Mol. Life Sci. 65, 1729–1755.

    Article  PubMed  CAS  Google Scholar 

  32. Midgett C.R., Madden D.R. 2007. Breaking the bottleneck: Eukaryotic membrane protein expression for high-resolution structural studies. J. Struct. Biol. 160, 265–274.

    Article  PubMed  CAS  Google Scholar 

  33. MacKenzie K.R., Prestegard J.H., Engelman D.M. 1997. A transmembrane helix dimer: Structure and implications. Science. 276, 131–133.

    Article  PubMed  CAS  Google Scholar 

  34. Bocharov E.V., Pustovalova Y.E., Pavlov K.V., Volynsky P.E., Goncharuk M.V., Ermolyuk Y.S., Karpunin D.V., Schulga A.A., Kirpichnikov M.P., Efremov R.G., Maslennikov I.V., Arseniev A.S. 2007. Unique dimeric structure of BNip3 transmembrane domain suggests membrane permeabilization as a cell death trigger. J. Biol. Chem. 282, 16256–16266.

    Article  PubMed  CAS  Google Scholar 

  35. Sulistijo E.S., Mackenzie K.R. 2009. Structural basis for dimerization of the BNIP3 transmembrane domain. Biochemistry. 48, 5106–5120.

    Article  PubMed  CAS  Google Scholar 

  36. Bocharov E.V., Mineev K.S., Volynsky P.E., Ermolyuk Y.S., Tkach E.N., Sobol A.G., Chupin V.V., Kirpichnikov M.P., Efremov R.G., Arseniev A.S. 2008. Spatial structure of the dimeric transmembrane domain of the growth factor receptor ErbB2 presumably corresponding to the receptor active state. J. Biol. Chem. 283, 6950–6956.

    Article  PubMed  CAS  Google Scholar 

  37. Mineev K.S., Bocharov E.V., Pustovalova Y.E., Bocharova O.V., Chupin V.V., Arseniev A.S. 2010. Spatial structure of the transmembrane domain heterodimer of ErbB1 and ErbB2 receptor tyrosine kinases. J. Mol. Biol. 400, 231–243.

    Article  PubMed  CAS  Google Scholar 

  38. Bocharov E.V., Mayzel M.L., Volynsky P.E., Goncharuk M.V., Ermolyuk Y.S., Schulga A.A., Artemenko E.O., Efremov R.G., Arseniev A.S. 2008. Spatial structure and pH-dependent conformational diversity of dimeric transmembrane domain of the receptor tyrosine kinase EphA1. J. Biol. Chem. 283, 29385–29395.

    Article  PubMed  CAS  Google Scholar 

  39. Bocharov E.V., Mayzel M.L., Volynsky P.E., Mineev K.S., Tkach E.N., Ermolyuk Y.S., Schulga A.A., Efremov R.G., Arseniev A.S. 2010. Left-handed dimer of EphA2 transmembrane domain: Helix packing diversity among receptor tyrosine kinases. Biophys. J. 98, 881–889.

    Article  PubMed  CAS  Google Scholar 

  40. Gullick W.J., Bottomley A.C., Lofts F.J., Doak D.G., Mulvey D., Newman R., Crumpton M.J., Sternberg M.J., Campbell I.D. 1992. Three dimensional structure of the transmembrane region of the proto-oncogenic and oncogenic forms of the neu protein. EMBO J. 11, 43–48.

    PubMed  CAS  Google Scholar 

  41. Rigby A.C., Barber K.R., Shaw G.S., Grant C.W. 1996. Transmembrane region of the epidermal growth factor receptor: Behavior and interactions via 2H NMR. Biochemistry. 35, 12591–12601.

    Article  PubMed  CAS  Google Scholar 

  42. Jones D.H., Barber K.R., Grant C.W. 1998. Sequence-related behaviour of transmembrane domains from class I receptor tyrosine kinases. Biochim. Biophys. Acta. 1371, 199–212.

    Article  PubMed  CAS  Google Scholar 

  43. Houliston R.S., Hodges R.S., Sharom F.J., Davis J.H. 2003. Comparison of proto-oncogenic and mutant forms of the transmembrane region of the Neu receptor in TFE. FEBS Lett. 535, 39–43.

    Article  PubMed  CAS  Google Scholar 

  44. Khemtémourian L., Lavielle S., Bathany K., Schmitter J.M., Dufourc E.J. 2006. Revisited and large-scale synthesis and purification of the mutated and wild type neu/erbB-2 membrane-spanning segment. J. Pept. Sci. 12, 361–368.

    Article  PubMed  Google Scholar 

  45. Jones D.H., Ball E.H., Sharpe S., Barber K.R., Grant C.W. 2000. Expression and membrane assembly of a transmembrane region from Neu. Biochemistry. 39, 1870–1878.

    Article  PubMed  CAS  Google Scholar 

  46. Sharpe S., Barber K.R., Grant C.W. 2000. Val(659) → Glu mutation within the transmembrane domain of ErbB-2: Effects measured by (2)H NMR in fluid phospholipid bilayers. Biochemistry. 39, 6572–6580.

    Article  PubMed  CAS  Google Scholar 

  47. Volynsky P.E., Bocharov E.V., Nolde D.E., Vereschaga Ya.A., Mayzel M.L., Mineev K.S., Mineeva E.A., Pustovalova Yu.E., Gagnidze I.E., Efremov R.G., Arseniev A.S. 2006. Solution of the spatial structure of dimeric transmembrane domains of proteins by heteronuclear NMR spectroscopy and molecular modeling. Biophysics. 51, 23–27.

    Article  Google Scholar 

  48. Kirpichnikov M.P., Goncharuk M.V., Ermolyuk Ya.S., Goncharuk S.A., Shul’ga A.A. Maslennikov I.V., Arseniev A.S. 2005. Structural biology of membrane peptides. Tekhnol. Zhivykh Sistem. 2, 20–27.

    CAS  Google Scholar 

  49. Gasparian M.E., Ostapchenko V.G., Schulga A.A., Dolgikh D.A., Kirpichnikov M.P. 2003. Expression, purification, and characterization of human enteropeptidase catalytic subunit in Escherichia coli. Protein Expr. Purif. 31, 133–139.

    Article  CAS  Google Scholar 

  50. Sreerama N., Woody R.W. 2000. Estimation of protein secondary structure from circular dichroism spectra: Comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal. Biochem. 287, 252–260.

    Article  PubMed  CAS  Google Scholar 

  51. Melchers K., Weitzenegger T., Buhmann A., Steinhilber W., Sachs G., Schäfer K.P. 1996. Cloning and membrane topology of a P type ATPase from Helicobacter pylori. J. Biol. Chem. 271, 446–457.

    Article  PubMed  CAS  Google Scholar 

  52. Kim H.J., Howell S.C., Van Horn W.D., Jeon Y.H., Sanders C.R. 2009. Recent advances in the application of solution NMR spectroscopy to multi-span integral membrane proteins. Prog. Nucl. Magn. Reson. Spectrosc. 55, 335–360.

    Article  PubMed  CAS  Google Scholar 

  53. Luchette P.A., Vetman T.N., Prosser R.S., Hancock R.E., Nieh M.P., Glinka C.J., Krueger S., Katsaras J. 2001. Morphology of fast-tumbling bicelles: A small angle neutron scattering and NMR study. Biochim. Biophys. Acta. 1513, 83–94.

    Article  PubMed  CAS  Google Scholar 

  54. Andersson A., Mäler L. 2005. Magnetic resonance investigations of lipid motion in isotropic bicelles. Langmuir. 21, 7702–7709.

    Article  PubMed  CAS  Google Scholar 

  55. Jura N., Endres N.F., Engel K., Deindl S., Das R., Lamers M.H., Wemmer D.E., Zhang X., Kuriyan J. 2009. Mechanism for activation of the EGF receptor catalytic domain by the juxtamembrane segment. Cell. 137, 1293–1307.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Goncharuk.

Additional information

Original Russian Text © M.V. Goncharuk, A.A. Schulga, Ya.S. Ermolyuk, E.N. Tkach, S.A. Goncharuk, Yu.E. Pustovalova, K.S. Mineev, E.V. Bocharov, I.V. Maslennikov, A.S. Arseniev, M.P. Kirpichnikov, 2011, published in Molekulyarnaya Biologiya, 2011, Vol. 45, No. 5, pp. 892–902.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goncharuk, M.V., Schulga, A.A., Ermolyuk, Y.S. et al. Bacterial synthesis, purification, and solubilization of transmembrane segments of ErbB family receptors. Mol Biol 45, 823–832 (2011). https://doi.org/10.1134/S0026893311040066

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893311040066

Keywords

Navigation