Skip to main content
Log in

Structural and functional features of the 5-methylcytosine distribution in the eukaryotic genome

  • Reviews
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

DNA methylation is an integral part of the mechanism of a remodeling and modification of the chromatin structure. The global complex net of chromatin modification and remodeling reactions is still to be determined, and studies of the mechanisms controlling the epigenetic processes of histone modification and DNA methylation are in their infancy. Cytosine methylation occurs predominantly in CpG sequences of the eukaryotic genome, and it also takes place at symmetric CpHpG and nonsymmetric CpHpH sites (where H is A, T, or C). The modification efficiency of the three types of DNA methylation sites depends on their genomic localization. Different regions of the eukaryotic genome are remarkable for their methylation features: CpG-islands, CpG-island shores, differentially methylated regions of imprinted genes, and regions of nonalternative site-specific modification. The three canonical sites (CpG, CpHpG, and CpHpH) differ in DNA methylation efficiency depending on their nucleotide context. An epigenetic code of DNA methylation can be assumed with context differences playing a specific functional role. The review summarizes the main up-to-date data on the structural and functional features of site-specific cytosine methylation in eukaryotic genomes. Pathogenesis-related alterations in the methylation pattern of the eukaryotic genome are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

MTase:

DNA-methyltransferase

C5-MTase:

DNA-(cytosine-5-)-methyltransferase

AdoMet:

S-adenosyl-L-methionine

RLGS:

restriction-marked scanning of genome

DMR:

regions of differentiated methylation of DNA

T-DMR:

tissue specific differentially methylated areas of DNA

C-DMR:

oncospecific differentially methylated areas of DNA

CAM (Crassulean acid metabolism):

Crassula type metabolism of organic acids of plant

siRNA:

short interferencing RNA

H:

A, T, or C

References

  1. Tweedie S., Charlton J., Clark V., Bird A. 1997. Methylation of genomes and genes at the invertebratevertebrate boundary. Mol. Cell. Biol. 17, 1469–1465.

    PubMed  CAS  Google Scholar 

  2. Gardiner-Garden M., Frommer M. 1987. CpG islands in vertebrate genomes. J. Mol. Biol. 196, 261–282.

    Article  PubMed  CAS  Google Scholar 

  3. Bird A.P. 1986. CpG-rich islands and the function of DNA methylation. Nature. 321, 209–213.

    Article  PubMed  CAS  Google Scholar 

  4. Antequera F., Bird A. 1993. Number of CpG islands and genes in human and mouse. Proc. Natl. Acad. Sci. USA. 90, 11995–11999.

    Article  PubMed  CAS  Google Scholar 

  5. MacLeod D., Ali R.R., Bird A.P. 1998. An alternative promoter in the mouse major histocompatibility complex class II I-Aβ gene: implications for the origin of CpG islands. Mol. Cell Biol. 18, 4433–4443.

    PubMed  CAS  Google Scholar 

  6. Riggs A.D., Pfeifer G.P. 1992. X-chromosome inactivation and cell memory. Trends Genet. 8, 169–174.

    PubMed  CAS  Google Scholar 

  7. Razin A., Cedar H. 1994. DNA methylation and genomic imprinting. Cell. 77, 473–476.

    Article  PubMed  CAS  Google Scholar 

  8. Baylin S.B., Herman J.G., Graff J.R., et al. 1998. Alterations in DNA methylation: A fundamental aspect of neoplasia. Adv. Cancer Res. 72, 141–196.

    Article  PubMed  CAS  Google Scholar 

  9. Schmutte C., Jones P.A. 1998. Involvement of DNA methylation in human carcinogenesis. Biol. Chem. 379, 377–388.

    Article  PubMed  CAS  Google Scholar 

  10. Issa J.-P., Ottaviano Y.L., Celano P., et al. 1994. Methylation of the oestrogen receptor CpG island links ageing and neoplasia in human colon. Nature Genet. 7, 536–540.

    Article  PubMed  CAS  Google Scholar 

  11. Issa J.-P., Vertino P.M., Boehm C.D., et al. 1996. Switch from monoallelic to biallelic human IGF2 promoter methylation during aging and carcinogenesis. Proc. Natl. Acad. Sci. USA. 93, 11757–11762.

    Article  PubMed  CAS  Google Scholar 

  12. Bird A.P., Taggart M.H., Nicholls R.D., Higgs D.R. 1987. Nonmethylated CpG-rich islands at the human alpha-globin locus: Implications for evolution of the alpha-globin pseudogene. EMBO J. 6, 999–1004.

    PubMed  CAS  Google Scholar 

  13. Antequera F., Boyes J., Bird A. 1990. High levels of de novo methylation and altered chromatin structure at CpG islands in cell lines. Cell. 62, 503–514.

    Article  PubMed  CAS  Google Scholar 

  14. Tazi J., Bird A. 1990. Alternative chromatin structure at CpG islands. Cell. 60, 909–920.

    Article  PubMed  CAS  Google Scholar 

  15. Antequera F., MacLeod D., Bird A. 1989. Specific protection of methylated CpGs in mammalian nuclei. Cell. 44, 535–543.

    Google Scholar 

  16. Cooper D.N., Taggart M.H., Bird A.P. 1983. Unmethylated domains in vertebrate DNA. Nucleic Acids Res. 11, 647–658.

    Article  PubMed  CAS  Google Scholar 

  17. Antequera F., Bird A. 1988. Unmethylated CpG islands associated with genes in higher plant DNA. EMBO J. 7, 2295–2299.

    PubMed  CAS  Google Scholar 

  18. Aissani B., Bernardi G. 1991. CpG islands: features and distribution in the genomes of vertebrates. Gene. 106, 173–183.

    Article  PubMed  CAS  Google Scholar 

  19. Craig J.M., Bickmore W.A. 1994. The distribution of CpG islands in mammalian chromosomes. Nature Genet. 7, 376–381.

    Article  PubMed  CAS  Google Scholar 

  20. Carotti D., Palitti F., Lavia P., Strom R. 1989. In vitro methylation of CpG islands. Nucleic Acids Res. 17, 9219–9229.

    Article  PubMed  CAS  Google Scholar 

  21. Frank D., Keshet I., Sham M., et al. 1994. Demethylation of CpG islands in embryonic cells. Nature. 351, 239–241.

    Article  Google Scholar 

  22. Choi Y.-C., Chae C.-B. 1993. Demethylation of somatic and testis specific histone H2A and H2B genes in F9 embryonic carcinoma cells. Mol. Cell. Biol. 13, 5538–5548.

    PubMed  CAS  Google Scholar 

  23. MacLeod D., Charlton J., Mullins J., Bird A.P. 1994. Sp1 sites in the mouse aprt gene promoter are required to prevent methylation of the CpG island. Genes Dev. 8, 2282–2292.

    Article  PubMed  CAS  Google Scholar 

  24. Jones P.A. 1999. The DNA methylation paradox. Trends Genet. 15, 34–37.

    Article  PubMed  CAS  Google Scholar 

  25. Zhang X., Jacobsen S.E. 2006. Genetic analyses of DNA methyltransferases in Arabidopsis thaliana. Cold Spring Harb. Symp. Quant. Biol. 71, 439–447.

    Article  PubMed  CAS  Google Scholar 

  26. Tran R.K., Henikoff J.G., Zilberman D., et al. 2005. DNA methylation profiling identifies CG methylation clusters in Arabidopsis genes. Curr. Biol. 15, 154–159.

    Article  PubMed  CAS  Google Scholar 

  27. Cokus S.J., Feng S., Zhang X., et al. 2008. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature. 452, 215–219.

    Article  PubMed  CAS  Google Scholar 

  28. Ball M.P., Li J.B., Gao Y., et al. 2009. Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells. Nature Biotechnol. 27, 361–368.

    Article  CAS  Google Scholar 

  29. Zhang W., Lee H.R., Koo D.H., Jiang J. 2008. Epigenetic modification of centromeric chromatin: Hypomethylation of DNA sequences in the CENH3-associated chromatin in Arabidopsis thaliana and maize. Plant Cell. 20, 25–34.

    Article  PubMed  CAS  Google Scholar 

  30. Bernatavichute Y.V., Zhang X., Cokus S., et al. 2008. Genome-wide association of histone H3 lysine nine methylation with CHG DNA methylation in Arabidopsis thaliana. PLoS ONE. 8, e3156.

    Article  CAS  Google Scholar 

  31. Loeb L.A. 1991. Mutator phenotype may be required for multistage carcinogenesis. Cancer Res. 51, 3075–3079.

    PubMed  CAS  Google Scholar 

  32. Rideout W.M.III, Coetzee G.A., Olumi A.F., Jones P.A. 1990. 5-Methylcytosine as an endogenous mutagen in the human LDL receptor and p53 genes. Science. 249, 1288–1290.

    Article  PubMed  CAS  Google Scholar 

  33. Shen J.-C., Rideout W.M., Jones P. 1992. High frequency mutagenesis by a DNA methyltransferase. Cell. 71, 1073–1080.

    Article  PubMed  CAS  Google Scholar 

  34. Bandaru B., Wyszynski M., Bhagwat A.S. 1995. HpaII methyltransferase is mutagenic in Escherichia coli. J. Bacteriol. 177, 2950–2952.

    PubMed  CAS  Google Scholar 

  35. Wyszynski M., Gabbara S., Bhagwat A.S. 1994. Cytosine deaminations catalyzed by DNA cytosine methyltransferases are unlikely to be the major cause of mutational hot spots at sites of cytosine methylation in Escherichia coli. Proc. Natl. Acad. Sci. USA. 91, 1574–1578.

    Article  PubMed  CAS  Google Scholar 

  36. Yang A.S., Shen J.-C., Zingg J.-M., et al. 1995. HhaI and HpaII DNA methyltrasferases bind DNA mismatches, methylate uracil and block DNA repair. Nucleic Acids Res. 23, 1380–1387.

    Article  PubMed  CAS  Google Scholar 

  37. Yebra M., Bhagwat A.S. 1995. A cytosine methyltransferase converts 5-methylcytosine in DNA to thymine. Biochemistry. 34, 14752–14757.

    Article  PubMed  CAS  Google Scholar 

  38. Coulondre C., Miller J.H., Farabaugh P.J., Gilbert W. 1978. Molecular basis of base substitution hotspots in Escherichia coli. Nature. 274, 775–780.

    Article  PubMed  CAS  Google Scholar 

  39. Kangaspeska S., Stride B., Metivier R., et al. 2008. Transient cyclical methylation of promoter DNA. Nature. 452, 112–115.

    Article  PubMed  CAS  Google Scholar 

  40. Métivier R., Gallais R., Tiffoche C., et al. 2008. Cyclical DNA methylation of a transcriptionally active promoter. Nature. 452, 45–50.

    Article  PubMed  CAS  Google Scholar 

  41. Jones P.A., Baylin S.B. 2007. The epigenetics of cancer. Cell. 128, 683–692.

    Article  PubMed  CAS  Google Scholar 

  42. Yoder J.A., Walsh C.P., Bestor T.H. 1997. Cytosine methylation and the ecology of intragenomic parasites. Trends Genet. 13, 335–340.

    Article  PubMed  CAS  Google Scholar 

  43. Baylin S.B., Hoppener J.W.M., de Bustros A., et al. 1986. DNA methylation patterns of the calcitonin gene in human lung cancers and lymphomas. Cancer Res. 46, 2917–2922.

    PubMed  CAS  Google Scholar 

  44. Baylin S.B., Fearon E.R., Volgelstein B., et al. 1987. Hypermethylation of the 5’ region of the calcitonin gene is a property of human lymphoid and acute myeloid malignates. Blood. 70, 412–417.

    PubMed  CAS  Google Scholar 

  45. de Bustros A., Nelkin B.D., Silverman A., et al. 1988. The short arm of chromosome 11 is a “hot spot” for hypermethylation in human neoplasia. Proc. Natl. Acad. Sci. USA. 85, 5693–5697.

    Article  PubMed  Google Scholar 

  46. Loh W.E., Scrable H.J., Livanos E., et al. 1992. Human chromosome 11 contains two different growth suppressor genes for embryonal rhabdomyosarcoma. Proc. Natl. Acad. Sci. USA. 89, 1755–1759.

    Article  PubMed  CAS  Google Scholar 

  47. Hatada I., Fukasawa M., Kimura M., et al. 2006. Genome-wide profiling of promoter methylation in human. Oncogene. 25, 3059–3064.

    Article  PubMed  CAS  Google Scholar 

  48. Costello J.F., Frühwald M.C., Smiraglia D.J., et al. 2000. Aberrant CpG-island methylation has non-random and tumor-specific patterns. Nature Genet. 25, 132–138.

    Article  CAS  Google Scholar 

  49. Bienz-Tadmor B., Zakut-Houri R., Libresco S., et al. 1985. The 5’-region of the p53 gene: Evolutionary conservation and evidence for a negative regulatory element. EMBO J. 4, 3209–3213.

    PubMed  CAS  Google Scholar 

  50. Tuck S.P., Crawford L. 1989. Characterization of the human p53 gene promoter. Mol. Cell. Biol. 9, 2163–2172.

    PubMed  CAS  Google Scholar 

  51. Pogribny L.P., Miller B.J., James S.J. 1997. Alterations in hepatic p53 gene methylation patterns during tumor progression with folate/methyl deficiency in the rat. Cancer Lett. 115, 31–38.

    Article  PubMed  CAS  Google Scholar 

  52. Pogribny I.P., Pogribna M., Chrristman J.K., James S.J. 2000. Single-site methylation within the p53 promoter region reduces gene expression in a reporter gene construct: possible in vivo relevance during tumorgenesis. Cancer Res. 60, 588–594.

    PubMed  CAS  Google Scholar 

  53. Wicki R., Franz C., Scholl F.A., et al. 1997. Repression of the candidate tumor suppressor gene S100A2 in breast cancer is mediated by site specific hypermethylation. Cell Calcium. 22, 243–254.

    Article  PubMed  CAS  Google Scholar 

  54. Herman J.G., Umar A., Polyak K., et al. 1998. Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. Proc. Natl. Acad. Sci. USA. 95, 6870–6875.

    Article  PubMed  CAS  Google Scholar 

  55. Illingworth R., Kerr A., Desousa D., et al. 2008. A novel CpG-island set identifies tissue-specific methylation at developmental gene loci. PLoS Biol. 6, e22.

    Article  PubMed  CAS  Google Scholar 

  56. Shen L., Shen L., Kondo Y., et al. 2007. Genome-wide profiling of DNA methylation reveals a class of normally methylated CpG-island promoters. PLoS Genet. 3, 2023–2036.

    Article  PubMed  CAS  Google Scholar 

  57. Irizarry R.A., Ladd-Acosta C., Wen B., et al. 2009. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Genet. 41, 178–186.

    CAS  Google Scholar 

  58. Feinberg A.P., Ohlsson R., Henikoff S. 2006. The epigenetic progenitor origin of human cancer. Nature Rev. Genet. 7, 21–33.

    Article  PubMed  CAS  Google Scholar 

  59. Gribnau J., Hochedlinger K., Hata K., et al. 2003. Asynchronous replication timing of imprinted loci is independent of DNA methylation but consistent with differential subnuclear localization. Genes Dev. 17, 759–773.

    Article  PubMed  CAS  Google Scholar 

  60. Sasaki H., Jones P.A., Chaillet J.R., et al. 1992. Parental imprinting: Potentially active chromatin of the repressed maternal allele of the mouse insulin-like growth factor II (Igf2) gene. Genes Dev. 6, 1843–1856.

    Article  PubMed  CAS  Google Scholar 

  61. Stöger R., Kubicka P., Lin C.G., et al. 1993. Maternal-specific methylation of the imprinted mouse Igf2r locus identifies the expressed locus as carrying the imprinting signal. Cell. 73, 61–71.

    Article  PubMed  Google Scholar 

  62. Bartolomei M.S., Zemel S., Tilghman S.M. 1991. Parental imprinting of the mouse H19 gene. Nature. 351, 153–155.

    Article  PubMed  CAS  Google Scholar 

  63. Reik W. 1989. Genomic imprinting and genetic disorders in man. Trends Genet. 5, 331–336.

    Article  PubMed  CAS  Google Scholar 

  64. Brenton J.D., Viville S., Surani M.A. 1995. Genomic imprinting and cancer. Cancer Surv. 25, 161–171.

    PubMed  CAS  Google Scholar 

  65. Li E., Beard C., Forster A.C., et al. 1993. DNA methylation, genomic imprinting, and mammalian development. Cold Spring Harbor Symp. Quant. Biol. 58, 297–305.

    PubMed  CAS  Google Scholar 

  66. Bird A. 1993. Genomic imprinting: Imprints of islands. Curr. Biol. 3, 275–277.

    Article  PubMed  CAS  Google Scholar 

  67. Shemer R., Birger Y., Riggs A.D., Razin A. 1997. Structure of the imprinted mouse Snrpn gene and establishment of its parental-specific methylation pattern. Proc. Natl. Acad. Sci. USA. 94, 10267–10272.

    Article  PubMed  CAS  Google Scholar 

  68. Neumann B., Kubicka P., Barlow D.P. 1995. Characteristics of imprinted genes. Nature Genet. 9, 12–13.

    Article  PubMed  CAS  Google Scholar 

  69. Wutz A., Smrzka O.W., Schweifer N., et al. 1997. Imprinted expression of the Igf2r gene depends on an intronic CpG island. Nature. 389, 745–749.

    Article  PubMed  CAS  Google Scholar 

  70. Reik W., Walter J. 1998. Imprinting mechanisms in mammals. 1998. Curr. Opin. Genet. Dev. 8, 154–164.

    Article  PubMed  CAS  Google Scholar 

  71. Pedone P.V., Pikaart M.J., Cerrato F., et al. 1999. Role of histone acetylation and DNA methylation in the maintenance of the imprinted expression of the H19 and Igf2 genes. FEBS Lett. 458, 45–50.

    Article  PubMed  CAS  Google Scholar 

  72. Li E., Bestor T.H., Jaenisch R. 1992. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell. 69, 915–926.

    Article  PubMed  CAS  Google Scholar 

  73. Lei H., Oh S.P, Okano M., et al. 1996. De novo DNA cytosine methyltransferase activities in mouse embryonic stem cells. Development. 122, 3195–3205.

    PubMed  CAS  Google Scholar 

  74. Jaenisch R. 1997. DNA methylation and imprinting: Why bother? Trends Genet. 13, 323–329.

    Article  PubMed  CAS  Google Scholar 

  75. Reik W., Collick A., Norris M.L., et al. 1987. Genomic imprinting determines methylation of parental alleles in transgenic mice. Nature. 328, 248–254.

    Article  PubMed  CAS  Google Scholar 

  76. Sapienza C., Peterson A., Rossant J., Balling R. 1987. Degree of methylation of transgenes is dependent on gamete of origin. Nature. 328, 251–254.

    Article  PubMed  CAS  Google Scholar 

  77. Gutierrez-Marcos J., Dickinson H. 2002. Imprinted genes in maize. Comparative Biochem. Physiol., Part A. 132, S170.

    Google Scholar 

  78. Lin B-Y. 1984. Ploidy barrier to endosperm development in maize. Genetics. 107, 103–115.

    PubMed  CAS  Google Scholar 

  79. Haig D., Westoby M. 1991. Genomic imprinting in endosperm: Effects on seed development in crosses between species, and between different ploidies of the same species and its implications for the evolution of apomixis. Philos. Trans. R. Soc. London Ser. B. 333, 1–13.

    Article  Google Scholar 

  80. Kermicle J.L., Alleman M. 1990. Gametic imprinting in maize in relation to the angiosperm life cycle. Development Suppl., 9–14.

  81. Vinkenoog R., Scot R.J. Regulation of genomic imprinting in flowering plants. Comp. Biochem. Physiol., Part A. 132, S170.

  82. Adams S., Vinkenoog R., Spielman M., et al. 2000. Parent-of-origin effects on seed development in Arabidopsis thaliana require DNA methylation. Development. 127, 2493–2502.

    PubMed  CAS  Google Scholar 

  83. Chaudhuri S., Messing J. 1994. Allele-specific parental imprinting of dzr1, a posttranscriptional regulator of zein accumulation. Proc. Natl. Acad. Sci. USA. 91, 4867–4871.

    Article  PubMed  CAS  Google Scholar 

  84. Kermicle J.L. Imprinting of gene action in maize endosperm. In: Maize Breeding and Genetics. Ed. Walden D.B. N.Y.: Univ. West Ontario Press, 1978, pp. 357–371.

    Google Scholar 

  85. Alleman M., Doctor J. 2000. Genomic imprinting in plants: Observations and evolutionary implications. Plant Mol. Biol. 43, 147–161.

    Article  PubMed  CAS  Google Scholar 

  86. Heslop-Harrison J.S. 1990. Gene expression and parental dominance in hybrid plants. Development. Suppl., 21–28.

  87. Kinoshita T., Miura A., Choi Y., et al. 2004. One-way control of FWA imprinting in Arabidopsis endosperm by DNA methylation. Science. 303, 521–523.

    Article  PubMed  CAS  Google Scholar 

  88. Surani M.A. 2001. Reprogramming of genome function through epigenetic inheritance. Nature. 414, 122–128.

    Article  PubMed  CAS  Google Scholar 

  89. Woodcock D.M., Crowther P.J., Diver W.P. 1987. The majority of methylated deoxycytidines in human DNA are not in the CpG dinucleotide. Biochem. Biophys. Res. Commun. 145, 888–894.

    Article  PubMed  CAS  Google Scholar 

  90. Broad P.M., Symes A.J., Thakker R.V., Craig R.K. 1989. Structure and methylation of the human calcitonin/alpha-CGRP gene. Nucleic Acids Res. 17, 6999–7011.

    Article  PubMed  CAS  Google Scholar 

  91. Toth M., Müller U., Doerfler W. 1990. Establishment of de novo DNA methylation patterns: Transcription factor binding and deoxycytidine methylation at CpG and non-CpG sequences in an integrated adenovirus promoter. J. Mol. Biol. 214, 673–683.

    Article  PubMed  CAS  Google Scholar 

  92. Woodcock D.M., Lawler C.B., Linsenmeyer M.E., et al. 1997. Asymmetric methylation in the hypermethylated CpG promoter region of the human L1 retrotransposon. J. Biol. Chem. 272, 7810–7816.

    Article  PubMed  CAS  Google Scholar 

  93. Marinitch D.V., Vorobyev I.A., Holmes J.A., Zakharchenko N.S., Dyachenko O.V., Buryanov Ya.I., Shevchuk T.V. 2004. Hypermethylation of 5′ region of the human calcitonin gene in leukemias: Structural features and diagnostic significance. Biokhimiya. 69, 420–431.

    Google Scholar 

  94. Buryanov Yu.I., Shevchuk T.V., Zakharchenko N.S., Dyachenko O.V., Marinitch D.V., Vorobyev I.A. 2000. The absence of CNG-type methylation in the 5’ region of the human calcitonin gene in the norm and in leukemias. Bioorg. Khim. 26, 397–399.

    Google Scholar 

  95. Malone C.S., Miner M.D., Doerr J.R., et al. 2001. CmC(A/T)GG DNA methylation in mature B cell lymphoma gene silencing. Proc. Natl. Acad. Sci. USA. 98, 10404–10409.

    Article  PubMed  CAS  Google Scholar 

  96. Lorincz M.C., Schübeler D., Goeke S.C., et al. 2000. Dynamic analysis of proviral induction and de novo methylation: Implications for a histone deacetylase-independent, methylation density-dependent mechanism of transcriptional repression. Mol. Cell Biol. 20, 842–850.

    Article  PubMed  CAS  Google Scholar 

  97. Franchina M., Kay P.H. 2000. Evidence that cytosine residues within 5′-CCTGG-3′ pentanucleotides can be methylated in human DNA independently of the methylating system that modifies 5’-CG-3’ dinucleotides. DNA Cell Biol. 19, 521–526.

    Article  PubMed  CAS  Google Scholar 

  98. Agirre X., Vizmanos J.L., Calasanz M.J., et al. 2003. Methylation of CpG dinucleotides and/or CCWGG motifs at the promoter of TP53 correlates with decreased gene expression in a subset of acute lymphoblastic leukemia patients. Oncogene. 22, 1070–1072.

    Article  PubMed  CAS  Google Scholar 

  99. Kouidou S., Malousi A., Maglaveras N. 2006. Methylation and repeats in silent and nonsense mutations of p53. Mutat Res. 599, 167–177.

    PubMed  CAS  Google Scholar 

  100. Hong C.-C., Lay J.-D., Huang J.-S., et al. 2008. Receptor tyrosine kinase AXL is induced by chemotherapy drugs and overexpression of AXL confers drug resistance in acute myeloid leukemia. Cancer Lett. 268, 314–324.

    Article  PubMed  CAS  Google Scholar 

  101. Shevchuk T., Kretzner L., Munson K., Axume J., Clark J., Dyachenko O., Caudill M., Buryanov Ya., Smith S. 2005. Trangene-induced CCWGG methylation does not alter CG methylation patterning in human kidney cells. Nucleic Acids Res. 33, 6124–6136.

    Article  PubMed  CAS  Google Scholar 

  102. Bohnert H.J., Ostrem J.A., Cushman J.C., et al. 1988. Mesembryanthemum crystallinum, a higher plant model for the study of environmentally induced changes in gene expression. Plant Mol. Biol. Rep. 6, 10–28.

    Article  Google Scholar 

  103. Shevchuk T.V., Buryanov Ya.I. 1999. DNA methyl-transferases for the determination of the cytosine methylation level in the sequence CCWGG. Bioorg. Khim. 25, 630–633.

    PubMed  CAS  Google Scholar 

  104. Dyachenko O.V., Zakharchenko N.S., Shevchuk N.S., Bonert H., Kushman J., Buryanov Ya.I. 2006. Hypermethylation of CCWGG sequences in the DNA of Mesembryanthemum crystallinum plants upon their adaptation to salt stress. Biokhimiya. 71, 570–575.

    Google Scholar 

  105. Schmitt F., Oakeley E.J., Jost J.P. 1997. Antibiotics induce genome-wide hypermethylation in cultured Nicotiana tabacum plants. J. Biol. Chem. 272, 1534–1540.

    Article  PubMed  CAS  Google Scholar 

  106. Vaucheret H., Bêclin C., Elmayan T., et al. 1998. Transgene-induced gene silencing in plants. Plant J. 16, 651–659.

    Article  PubMed  CAS  Google Scholar 

  107. Matzke M.A., Matzke A.J.M., Primig M., Trnousky J. 1989. Reversible methylation and inactivation of marker genes in sequentially transformed tobacco plants. EMBO J. 8, 643–649.

    PubMed  CAS  Google Scholar 

  108. Napoli C., Lemieux C., Jorgensen R. 1990. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. in trans. Plant Cell. 2, 279–289.

    Article  PubMed  CAS  Google Scholar 

  109. Van der Krol A.R., Mur L.A., Beld M., et al. 1990. Flavonoid genes in petunia: Addition of a limited number of gene copies may lead to a suppression of gene expression. Plant Cell. 2, 291–299.

    Article  PubMed  Google Scholar 

  110. Ratcliff F., Harrison B.D., Baulcombe D.C. 1997. A similarity between viral defense and gene silencing in plants. Science. 276, 1558–1560.

    Article  PubMed  CAS  Google Scholar 

  111. Meyer P., Heidmann I., Niedenhof I. 1993. Differences in DNA methylation are associated with a para-mutation phenomenon in transgenic petunia. Plant J. 4, 89–100.

    Article  PubMed  CAS  Google Scholar 

  112. Wassenegger M., Heimes S., S:anger H.L. 1994. An infectious viroid RNA replicon evolved from an in vitro-generated non-infectious viroid deletion mutant via a complementary deletion in vivo. EMBO J. 13, 6172–6177.

    PubMed  CAS  Google Scholar 

  113. Pelissier T., Thalmeir S., Kempe D., et al. 1999. Heavy de novo methylation at symmetrical and non-symmetrical sites is a hallmark of RNA-directed DNA methylation. Nucleic Acids Res. 27, 1625–1634.

    Article  PubMed  CAS  Google Scholar 

  114. Waterhause P.M., Graham M.W, Wang M.-B. 1998. Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc. Natl. Acad. Sci. USA. 95, 13959–13964.

    Article  Google Scholar 

  115. Fire A. 1999. RNA-triggered gene silencing. Trends Genet. 15, 358–363.

    Article  PubMed  CAS  Google Scholar 

  116. Hamilton A.J., Baulcombe D.C. 1999. A species of small antisense RNA in posttanscriptional gene silencing in plants. Science. 286, 950–952.

    Article  PubMed  CAS  Google Scholar 

  117. Zamore P., Tuschl T., Sharp P., Bartel D. 2000. RNAi: Double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell. 101, 25–33.

    Article  PubMed  CAS  Google Scholar 

  118. Zilberman D., Cao X., Jacobsen S. 2003. ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation. Science. 299, 716–719.

    Article  PubMed  CAS  Google Scholar 

  119. Hurtvagner G., Simard M.G. 2008. Argonaute proteins: Key players in RNA silencing. Nature Rev. Mol. Cell Biol. 9, 22–32.

    Article  CAS  Google Scholar 

  120. Irvine D.V., Zaratiegui M., Tolia N.H., et al. 2006. Argonaute slicing is required for heterochromatic silencing and spreading. Science. 313, 1134–1137.

    Article  PubMed  CAS  Google Scholar 

  121. Matzke M.A., Birchler J.A. 2005. RNAi-mediated pathways in the nucleus. Nature Rev. Genet. 6, 24–35.

    Article  PubMed  CAS  Google Scholar 

  122. Chan S.W., Henderson I.R., Jacobsen S.E. 2005. Gardening the genome: DNA methylation in Arabidopsis thaliana. Nature Rev. Genet. 6, 351–360.

    Article  PubMed  CAS  Google Scholar 

  123. Kanno T., Mette M.F., Kreil D.P., et al. 2004. Involvement of putative SNF2 chromatin remodeling protein DRD1 in RNA-directed DNA methylation. Curr. Biol. 14, 801–805.

    Article  PubMed  CAS  Google Scholar 

  124. Kanno T., Huettel B., Mette M.F., et al. 2005. Atypical RNA polymerase subunits required for RNA-directed DNA methylation. Nature Genet. 37, 761–765.

    Article  PubMed  CAS  Google Scholar 

  125. Huettel B., Kanno T., Daxinger L., et al. 2006. Endogenous targets of RNA-directed DNA methylation and Pol IV in Arabidopsis. EMBO J. 25, 2828–2836.

    Article  PubMed  CAS  Google Scholar 

  126. McStay B. 2006. Nucleolar dominance: A model for rRNA gene silencing. Genes Dev. 20, 1207–1214.

    Article  PubMed  CAS  Google Scholar 

  127. Preuss S., Pikaard C.S. 2007. rRNA gene silencing and nucleolar dominance: Insights into a chromosomescale epigenetic on/off switch. Biochim. Biophys. Acta. 1769, 383–392.

    PubMed  CAS  Google Scholar 

  128. Heard E., Distenche C.M. 2006. Dosage compensation in mammals: Fine-tuning the expression of the X chromosome. Genes Dev. 20, 1848–1867.

    Article  PubMed  CAS  Google Scholar 

  129. Preuss S.B., Costa-Nunes P., Tucker S., et al. 2008. Multimegabase silencing in nucleolar dominance involves siRNA-directed DNA methylation and specific methylcytosine-binding proteins. Mol. Cell. 32, 673–684.

    Article  PubMed  CAS  Google Scholar 

  130. Matzke M., Matzke A.J.M. 1993. Genomic imprinting in plants: Parental effects and trans-inactivation phenomena. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44, 53–76.

    Article  CAS  Google Scholar 

  131. Lucy A.P., Guo H.-S., Li W.-X., Ding S.-W. 2000. Suppression of posttranscriptional gene silencing by a plant viral protein localized in the nucleus. EMBO J. 19, 1672–1680.

    Article  PubMed  CAS  Google Scholar 

  132. Dorokhov Yu.L. 2007. “Silencing” of genes in plants. Molekulyarnaya Biologiya, 41, 579–592.

    Google Scholar 

  133. Jacobsen S.E., Meyerowitz E.M. 1997. Hypermethylated SUPERMAN epigenetic alleles in Arabidopsis. Science. 277, 1100–1103.

    Article  PubMed  CAS  Google Scholar 

  134. Jacobsen S.E., Sakai H., Finnegan E.J., et al. 2000. Ectopic hypermethylation of flower-specific genes in Arabidopsis. Curr. Biol. 10, 179–186.

    Article  PubMed  CAS  Google Scholar 

  135. Kiryanov G.I., Kintsurashvili L.N., Isaeva L.V., Zakharova M.G. 2004. Positioning of a nucleosome on mouse satellite DNA inserted into a yeast plasmid is determined by its DNA sequence and an adjacent nucleosome. Biokhimiya. 69, 1283–1291.

    Google Scholar 

  136. Frommer M., McDonald L.E., Millar D.S., et al. 1992. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc. Natl. Acad. Sci. USA. 89, 1827–1831.

    Article  PubMed  CAS  Google Scholar 

  137. Weber M., Davies J.J., Wittig D., et al. 2005. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat. Genet. 37, 853–862.

    Article  PubMed  CAS  Google Scholar 

  138. Bibikova M., Lin Z., Zhou L., et al. 2006. High-throughput DNA methylation profiling using universal bead arrays. Genome Res. 16, 383–393.

    Article  PubMed  CAS  Google Scholar 

  139. Hatada I., Fukasawa M., Kimura M., et al. 2006. Genome-wide profiling of promoter methylation in human. Oncogene. 25, 3059–3064.

    Article  PubMed  CAS  Google Scholar 

  140. Watson B., Munson K., Clark J., Shevchuk T., Smith S.S. 2007. Distribution of CWG and CCWGG in the human genome. Epigenetics. 2, 151–154.

    Article  PubMed  Google Scholar 

  141. Feltus F.A., Lee E.K., Costello J.F., et al. 2003. Predicting aberrant CpG island methylation. Proc. Natl. Acad. Sci. USA. 100, 12253–12258.

    Article  PubMed  CAS  Google Scholar 

  142. Feltus F.A., Lee E.K., Costello J.F., et al. 2006. DNA motifs associated with aberrant CpG island methylation. Genomics. 87, 572–579.

    Article  PubMed  CAS  Google Scholar 

  143. Zhang Y., Rohde C., Tierling S., et al. 2009. DNA methylation analysis of chromosome 21 gene promoters at single base pair and single allele resolution. PLoS Genet. 5, e1000438.

    Article  PubMed  CAS  Google Scholar 

  144. Zilberman D., Coleman-Derr D., Ballinger T., Henikoff S. 2008. Histone H2A.Z and DNA methylation are mutually antagonistic chromatin marks. Nature. 456, 125–130.

    Article  PubMed  CAS  Google Scholar 

  145. Nikitina T., Shi X., Ghosh R.P., et al. 2007. Multiple modes of interaction between the methylated DNA binding protein MeCP2 and chromatin. Mol. Cell. Biol. 27, 864–877.

    Article  PubMed  CAS  Google Scholar 

  146. Rauch C., Trieb M., Wibowo F.R., et al. 2005. Towards an understanding of DNA recognition by the methyl-CpG binding domain 1. J. Biomol. Struct. Dynamics. 22, 695–706.

    CAS  Google Scholar 

  147. Buryanov Ya.I., Shevchuk T.V. 2005. DNA methyltransferases and structural-functional specificity of eukaryotic DNA modification. Biokhimiya. 70, 885–899.

    Google Scholar 

  148. Woo H.R., Pontes O., Pikaard C.S., Richards E.J. 2007. VIM1, a methylcytosine-binding protein required for centromeric heterochromatinization. Genes Dev. 21, 267–277.

    Article  PubMed  CAS  Google Scholar 

  149. Henderson I.R., Jacobsen S.E. 2007. Epigenetic inheritance in plants. Nature. 447, 418–424.

    Article  PubMed  CAS  Google Scholar 

  150. Smith S.S., Kan J.L., Baker D.J., et al. 1991. Recognition of unusual DNA structures by human DNA (cytosine-5)methyltransferase. J. Mol. Biol. 217, 39–51.

    Article  PubMed  CAS  Google Scholar 

  151. Smith S.S., Kaplan B.E., Sowers L.C., Newman E.M. 1992. Mechanism of human methyl-directed DNA methyltransferase and the fidelity of cytosine methylation. Proc. Natl. Acad. Sci. USA. 89, 4744–4748.

    Article  PubMed  CAS  Google Scholar 

  152. Smith S.S. 1994. Biological implications of the mechanism of action of human DNA (cytosine-5)methyltransferase. Prog. Nucl. Acids Res. Mol. Biol. 49, 65–111.

    Article  CAS  Google Scholar 

  153. Tollefsbol T.O., Hutchinson C.A. 1997. Control of methylation spreading in synthetic DNA sequences by the murine DNA methyltransferase. J. Mol. Biol. 269, 494–504.

    Article  PubMed  CAS  Google Scholar 

  154. Okano M., Bell D.W., Haber D.A., Li E. 1999. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 99, 247–257.

    Article  PubMed  CAS  Google Scholar 

  155. Xu G.-L., Bestor T.H., Bourc’his D., et al. 1999. Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferasre gene. Nature. 402, 187–191.

    Article  PubMed  CAS  Google Scholar 

  156. Jeanpierre M., Turleau C., Aurias A., et al. 1993. An embryonic-like methylation pattern of classical satellite DNA is observed in ISF syndrome. Hum. Mol. Genet. 2, 731–735.

    Article  PubMed  CAS  Google Scholar 

  157. Lindroth A.M., Cao X., Jackson J.P., et al. 2001. Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation. Science. 292, 2077–2080.

    Article  PubMed  CAS  Google Scholar 

  158. Cao X., Springer N.M., Muszynsk M.G., et al. 2000. Conserved plant genes with similarity to mammalian de novo DNA methyltransferases. Proc. Natl. Acad. Sci. USA. 97, 4979–4984.

    Article  PubMed  CAS  Google Scholar 

  159. Shorning B.Yu., Vanyushin B.F. 2001. Putative DNA (amino)methyltransferases in eukaryotes. Biokhimiya. 66, 929–939.

    Google Scholar 

  160. Bakeeva L.E., Kirnos M.D., Aleksandrushkina N.I., et al. 1999. Subcellular reorganization of mitochondria producing heavy DNA in aging wheat coleoptiles. FEBS Lett. 457, 122–125.

    Article  PubMed  CAS  Google Scholar 

  161. Fedoreyeva L.I., Vanyushin B.F. 2002. N(6)-Adenine DNA-methyltransferase in wheat seedlings. FEBS Lett. 514, 305–308.

    Article  PubMed  CAS  Google Scholar 

  162. Ashapkin V.V., Kutueva L.I., Vanyushin B.F. 2002. The gene for domains rearranged methyltransferase (DRM2) in Arabidopsis thaliana plants is methylated at both cytosine and adenine residues. FEBS Lett. 532, 367–372.

    Article  PubMed  CAS  Google Scholar 

  163. Rriaucionis S., Heintz N. 2009. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science. 324, 929–930.

    Article  CAS  Google Scholar 

  164. Tahiliani M., Koh K.P., Shen Y., et al. 2009. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 324, 930–935.

    Article  PubMed  CAS  Google Scholar 

  165. Zhang F., Pomerantz J.H., Sen G., et al. 2007. Active tissue-specific DNA demethylation conferred by somatic cell nuclei in stable heterokaryons. Proc. Natl. Acad. Sci. USA. 104, 4395–4400.

    Article  PubMed  CAS  Google Scholar 

  166. Jost J.P., Oakeley E.J., Zhu B., et al. 2001. 5-Methylcytosine DNA glycosylase participates in the genomewide loss of DNA methylation occurring during mouse myoblast differentiation. Nucleic Acids Res. 29, 4452–4461.

    Article  PubMed  CAS  Google Scholar 

  167. Ramchandani S., Bhattacharya S.K., Cervoni N., Szyf M. 1999. DNA methylation is a reversible biological signal. Proc. Natl. Acad. Sci. USA. 96, 6107–6112.

    Article  PubMed  CAS  Google Scholar 

  168. Smith S.S. 2000. Gilbert’s conjecture: the search for DNA (cytosine-5) demethylases and the emergence of new functions for eukaryotic DNA (cytosine-5) methyltransferases. J. Mol. Biol. 302, 1–7.

    Article  PubMed  CAS  Google Scholar 

  169. D’Alessio A.C., Szyf M. 2006. Epigenetic tête-á-tête: The bilateral relationship between chromatin modification and DNA methylation. Biochem. Cell. Biol. 84, 463–476.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Dyachenko.

Additional information

Original Russian Text © O.V. Dyachenko, T.V. Shevchuk, Ya.I. Buryanov, 2010, published in Molekulyarnaya Biologiya, 2010, Vol. 44, No. 2, pp. 195–210.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dyachenko, O.V., Shevchuk, T.V. & Buryanov, Y.I. Structural and functional features of the 5-methylcytosine distribution in the eukaryotic genome. Mol Biol 44, 171–185 (2010). https://doi.org/10.1134/S0026893310020019

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893310020019

Key words

Navigation