Skip to main content
Log in

Diverse molecular mechanisms of translation initiation in prokaryotes

  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

More than 30 years ago Shine and Dalgarno proposed a classic model of prokaryotic translation initiation, based on the central role of the mRNA-16S rRNA interactions. Since then basic research has greatly extended the view of this process, owing to rapid progress in experimental techniques and genome sequencing. This review focuses on bioinformatic data and experimental results obtained in vitro and in vivo, demonstrating the diversity of molecular mechanisms for ribosome recruitment in prokaryotes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kozak M. 1999. Initiation of translation in prokaryotes and eukaryotes. Gene. 234, 187–208.

    Article  PubMed  CAS  Google Scholar 

  2. Jackson R.J. 2000. A comparative view of initiation site selection mechanisms. In: Translational Control of Gene Expression. Eds. Sonnenberg N., Hershey J.W.B., Mathews M.B. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press, pp. 127–183.

    Google Scholar 

  3. Shine J., Dalgarno L. 1974. The 3′-terminal sequence of Escherichia coli 16S ribosomal RNA: Complementarity to nonsense triplets and ribosomal binding sites. Proc. Natl. Acad. Sci. USA. 71, 1342–1346.

    Article  PubMed  CAS  Google Scholar 

  4. Steitz J.A., Jakes K. 1975. How ribosomes select initiator regions in mRNA: Base pair formation between the 3′-terminus of 16S rRNA and the mRNA during initiation of protein synthesis in Escherichia coli. Proc. Natl. Acad. Sci. USA. 72, 4734–4738.

    Article  PubMed  CAS  Google Scholar 

  5. Schneider T.D., Stormo G.D., Gold L., Ehrenfeucht A. 1986. Information content of binding sites on nucleotide sequences. J. Mol. Biol. 188, 415–431.

    Article  PubMed  CAS  Google Scholar 

  6. Hui A., de Boer H.A. 1987. Specialized ribosome system: Preferential translation of a single mRNA species by a subpopulation of mutated ribosomes in Escherichia coli. Proc. Natl. Acad. Sci USA. 84, 4762–4766.

    Article  PubMed  CAS  Google Scholar 

  7. Jacob W.F., Santer M., Dahlberg A.E. 1987. A single base change in the Shine-Dalgarno region of 16S RNA of Escherichia coli affects translation of many proteins. Proc. Natl. Acad. Sci. USA. 84, 4757–4761.

    Article  PubMed  CAS  Google Scholar 

  8. Gold L. 1988. Post-transcriptional regulatory mechanisms in Escherichia coli. Annu. Rev. Biochem. 57, 199–233.

    Article  PubMed  CAS  Google Scholar 

  9. Gualerzi C., Pon C. 1990. Initiation of mRNA translation in prokaryotes. Biochemistry. 29, 5881–5889.

    Article  PubMed  CAS  Google Scholar 

  10. Laursen B.S., Srensen H.P., Mortensen K.K., Sperling-Petersen H.U. 2005. Initiation of protein synthesis in bacteria. Microbiol. Mol. Biol. Rev. 69, 101–123.

    Article  PubMed  CAS  Google Scholar 

  11. Ringquist S., Shinedling S., Barrick D., Green L., Binkley J., Stormo G.D., Gold L. 1992. Translation initiation in Escherichia coli: Sequences within the ribosome binding site. Mol. Microbiol. 6, 1219–1229.

    PubMed  CAS  Google Scholar 

  12. Chen H., Bjerknes M., Kumar R., Jay E. 1994. Determination of optimal aligned spacing between the Shine-Dalgarno sequence and the translation initiation codon of Escherichia coli mRNAs. Nucleic Acids Res. 22, 4953–4957.

    PubMed  CAS  Google Scholar 

  13. Shultzaberger R.K., Bucheimer R.E., Rudd K.E., Schneider T.D. 2001. Anatomy of Escherichia coli ribosome binding sites. J. Mol. Biol. 313, 215–228.

    Article  PubMed  CAS  Google Scholar 

  14. de Smit M.H., van Duin J. 1990. Secondary structure of the ribosome binding site determines translational efficiency: A quantitative analysis. Proc. Natl. Acad. Sci. USA. 87, 7668–7672.

    Article  PubMed  Google Scholar 

  15. de Smit M.H., van Duin J. 1994. Translation initiation on structured messengers. Another role for the Shine-Dalgarno interaction. J. Mol. Biol. 235, 173–184.

    Article  PubMed  Google Scholar 

  16. Steitz J.A. 1969. Polypeptide chain initiation: Nucleotide sequences of the three ribosomal binding sites in bacteriophage R17 RNA. Nature. 224, 957–964.

    Article  PubMed  CAS  Google Scholar 

  17. Sakai H., Imamura C., Osada Y., Saito R., Washio T., Tomita M. 2001. Correlation between Shine-Dalgarno sequence conservation and codon usage of bacterial genes. J. Mol. Evol. 52, 164–170.

    PubMed  CAS  Google Scholar 

  18. Hartz D., McPheeters D.S., Traut R., Gold L. 1988. Extension inhibition analysis of translation initiation complexes. Meth. Enzymol. 164, 419–425.

    Article  PubMed  CAS  Google Scholar 

  19. Yusupova G.Z., Yusupov M.M., Cate J.H., Noller H.F. 2001. The path of messenger RNA through the ribosome. Cell. 106, 233–241.

    Article  PubMed  CAS  Google Scholar 

  20. McCarthy J.E.G., Gualerzi C.O. 1990. Translational control of prokaryotic gene expression. Trends Genet. 6, 78–85.

    Article  PubMed  CAS  Google Scholar 

  21. Roberts M.W., Rabinowitz J.C. 1989. The effect of Escherichia coli ribosomal protein S1 on translation specificity of bacterial ribosomes. J. Biol. Chem. 264, 2228–2235.

    PubMed  CAS  Google Scholar 

  22. Vellanoweth R.L., Rabinowitz J.C. 1992. The influence of ribosome-binding-site elements on translational efficiency in Bacillus subtilis and Escherichia coli in vivo. Mol. Microbiol. 6, 1105–1114.

    PubMed  CAS  Google Scholar 

  23. Escherich T. 1885. Bakteriologische Untersuchungen über Frauenmilch. Fortschritte der Medizin. 3, 231–236.

    Google Scholar 

  24. Ma J., Campbell A., Karlin S. 2002. Correlations between Shine-Dalgarno sequences and gene features such as predicted expression levels and operon structures. J. Bacteriol. 184, 5733–5745.

    Article  PubMed  CAS  Google Scholar 

  25. Schurr T., Nadir E., Margalit H. 1993. Identification and characterization of E. coli ribosomal binding sites by free energy computation. Nucleic Acids Res. 21, 4019–4023.

    PubMed  CAS  Google Scholar 

  26. Lithwick G., Margalit H. 2003. Hierarchy of sequence-dependent features associated with prokaryotic translation. Genome Res. 13, 2665–2673.

    Article  PubMed  CAS  Google Scholar 

  27. Komarova A.V., Tchufistova L.S., Supina E.V., Boni I.V. 2002. Protein S1 counteracts the inhibitory effect of the extended Shine-Dalgarno sequence on translation. RNA. 8, 1137–1147.

    Article  PubMed  CAS  Google Scholar 

  28. Komarova A.V., Tchufistova L.S., Dreyfus M., Boni I.V. 2005. A/U-rich sequences within 5′-untranslated leaders enhance translation and stabilize mRNA in Escherichia coli. J. Bacteriol. 187, 1344–1349.

    Article  PubMed  CAS  Google Scholar 

  29. Clark M.A., Baumann L., Thao M.L., Moran N.A., Baumann P. 2001. Degenerative minimalism in the genome of a psyllid endosymbiont. J. Bacteriol. 183, 1853–1861.

    Article  PubMed  CAS  Google Scholar 

  30. Sharma M.R., Koc E.C., Datta P.P., Booth T.M., Spremulli L.L., Agrawal R.K. 2003. Structure of the mammalian mitochondrial ribosome reveals an expanded functional role for its component proteins. Cell. 115, 97–108.

    Article  PubMed  CAS  Google Scholar 

  31. Melancon P., Leclerc D., Destroimaisons N., Brakier-Gingras L. 1990. The anti-Shine-Dalgarno region in Escherichia coli 16S ribosomal RNA is not essential for correct selection of translational starts. Biochemistry. 29, 3402–3407.

    Article  PubMed  CAS  Google Scholar 

  32. Calogero R.A., Pon C.L., Canonaco M.A., Gualerzi C.O. 1988. Selection of the mRNA translation initiation region by Escherichia coli ribosomes. Proc. Natl. Acad. Sci. USA. 85, 6427–6431.

    Article  PubMed  CAS  Google Scholar 

  33. Wu C.-J., Janssen G.R. 1997. Expression of a streptomycete leaderless mRNA encoding chloramphenicol acetyltransferase in Escherichia coli. J. Bacteriol. 179, 6824–6830.

    PubMed  CAS  Google Scholar 

  34. Wilson T.M.A. 1986. Expression of the large 5′-proximal cistron of tobacco mosaic virus by 70S ribosomes during cotranslational disassembly in a prokaryotic cell-free system. Virology. 152, 277–279.

    Article  CAS  PubMed  Google Scholar 

  35. Gallie D.R., Kado C.I. 1989. A translational enhancer derived from tobacco mosaic virus is functionally equivalent to a Shine-Dalgarno sequence. Proc. Natl. Acad. Sci. USA. 86, 129–132.

    Article  PubMed  CAS  Google Scholar 

  36. Tzareva N.V., Makhno V.I., Boni I.V. 1994. Ribosome-messenger recognition in the absence of Shine-Dalgarno interactions. FEBS Lett. 337, 189–194.

    Article  PubMed  CAS  Google Scholar 

  37. Loechel S., Inamine J.M., Hu P.C. 1991. A novel translation initiation region from Mycoplasma genitalium that functions in Escherichia coli. Nucleic Acids Res. 19, 6905–6911.

    PubMed  CAS  Google Scholar 

  38. Fargo D.C., Zhang M., Gillham N.W., Boynton J.E. 1998. Shine-Dalgarno sequences are not required for translation of chloroplast mRNAs in Chlamidomonas reinhardtii chloroplasts or in Escherichia coli. Mol. Gen. Genet. 257, 271–282.

    Article  PubMed  CAS  Google Scholar 

  39. O’Connor M., Dahlberg A.E. 2001. Enhancement of translation by the epsilon element is independent of the sequence of the 460 region of 16S RNA. Nucleic Acids Res. 29, 1420–1425.

    Article  PubMed  CAS  Google Scholar 

  40. O’Connor M., Asai T., Squires C.L., Dahlberg A.E. 1999. Enhancement of translation by the downstream box does not involve base pairing of mRNA with the penultimate stem sequence of 16S rRNA. Proc. Natl. Acad. Sci. USA. 96, 8973–8978.

    Article  PubMed  CAS  Google Scholar 

  41. Boni I.V., Issaeva D.M., Musychenko M.L., Tzareva N.V. 1991. Ribosome-messenger recognition: mRNA target sites for ribosomal protein S1. Nucleic Acids Res. 19, 155–162.

    PubMed  CAS  Google Scholar 

  42. Subramanian A.R. 1983. Structure and functions of ribosomal protein S1. Prog. Nucleic Acid Res. Mol. Biol. 28, 101–142.

    PubMed  CAS  Google Scholar 

  43. Merendino L., Falciatore A., Rochaix J.D. 2003. Expression and RNA-binding properties of the chloroplast ribosomal protein S1 from Chlamydomonas reinhardtii. Plant Mol. Biol. 53, 371–382.

    Article  PubMed  CAS  Google Scholar 

  44. Bycroft M., Hubbard T.J., Proctor M., Freund S.M., Murzin A.G. 1997. The solution structure of the S1 RNA binding domain: a member of an ancient nucleic acid-binding fold. Cell. 88, 235–242.

    Article  PubMed  CAS  Google Scholar 

  45. Boni I.V., Zlatkin I.V., Budowsky E.I. 1982. Ribosomal protein S1 associates with Escherichia coli ribosomes by means of protein-protein interactions. Eur. J. Biochem. 121, 371–376.

    Article  PubMed  CAS  Google Scholar 

  46. Boni I.V., Artamonova V.S., Dreyfus M. 2000. The last RNA-binding repeat of the Escherichia coli ribosomal protein S1 is specifically involved in the autogenous control. J. Bacteriol. 182, 5872–5879.

    Article  PubMed  CAS  Google Scholar 

  47. Sorokin A., Serror P., Pujic P., Azevedo V., Ehrlich S.D. 1995. The Bacillus subtilis chromosome region encoding homologues of the Escherichia coli mssA and rpsA gene products. Microbiology. 141, 311–319.

    Article  PubMed  CAS  Google Scholar 

  48. Sugita M., Sugita C., Sugiura M. 1995. Structure and expression of the gene encoding ribosomal protein S1 from the cyanobacterium Synechococcus sp. strain PCC 6301: Striking sequence similarity to the chloroplast ribosomal protein CS1. Mol. Gen. Genet. 246, 142–147.

    Article  PubMed  CAS  Google Scholar 

  49. Walleczek J., Albrecht-Ehrlich R., Stoffler G., Stoffler-Meilicke M. 1990. Three-dimensional localization of the NH2-and carboxyl-terminal domains of ribosomal protein S1 on the surface of the 30S subunit from Escherichia coli. J. Biol. Chem. 265, 11,338–11,344.

    CAS  Google Scholar 

  50. Sengupta J., Agrawal R.K., Frank J. 2001. Visualization of protein S1 within the 30S ribosomal subunit and its interaction with messenger RNA. Proc. Natl. Acad. Sci. USA. 98, 11,991–11,996.

    Article  CAS  Google Scholar 

  51. Jenner L., Romby P., Rees B., Schulze-Briese C., Springer M., Ehresmann C., Ehresmann B., Moras D., Yusupova G., Yusupov M. 2005. Translational operator of mRNA on the ribosome: How repressor proteins exclude ribosome binding. Science. 308, 120–123.

    Article  PubMed  CAS  Google Scholar 

  52. Boni I.V., Artamonova V.S., Tzareva N.V., Dreyfus M. 2001. Non-canonical mechanism for translational control in bacteria: Synthesis of ribosomal protein S1. EMBO J. 20, 4222–4232.

    Article  PubMed  CAS  Google Scholar 

  53. Artamonova V.S., Tsareva N.V., Boni I.V. 1998. Regulation of L7/12 ribosomal protein synthesis: Role of the rplJL intercistron region as a translation enhancer. Bioorg. Khim. 24, 530–538.

    PubMed  CAS  Google Scholar 

  54. Sorensen M.A., Fricke J., Pedersen S. 1998. Ribosomal protein S1 is required for translation of most, if not all, natural mRNAs in Escherichia coli in vivo. J. Mol. Biol. 280, 561–569.

    Article  PubMed  CAS  Google Scholar 

  55. Ringquist S., Jones T., Snyder E.E., Gibson T., Boni I., Gold L. 1995. High-affinity RNA ligands to Escherichia coli ribosomes and ribosomal protein S1: Comparison of natural and unnatural binding sites. Biochemistry. 34, 3640–3648.

    Article  PubMed  CAS  Google Scholar 

  56. Tchufistova L.S., Komarova A.V., Boni I.V. 2003. A key role for the mRNA leader structure in translational control of ribosomal protein S1 synthesis in gamma-proteobacteria. Nucleic Acids Res. 31, 6996–7002.

    Article  PubMed  CAS  Google Scholar 

  57. Zengel J.M., Lindahl L. 1994. Diverse mechanisms for regulating ribosomal protein synthesis in Escherichia coli. Prog. Nucleic Acid Res. Mol. Biol. 47, 331–370.

    Article  PubMed  CAS  Google Scholar 

  58. Sacerdot C., Caillet J., Graffe M., Eyermann F., Ehresmann B., Ehresmann C., Springer M., Romby P. 1998. The Escherichia coli threonyl-tRNA synthetase gene contains a split ribosomal binding site interrupted by a hairpin structure that is essential for autoregulation. Mol. Microbiol. 29, 1077–1090.

    Article  PubMed  CAS  Google Scholar 

  59. Janssen G.R. 1993. Eubacterial, archaebacterial and eukaryotic genes that encode leaderless mRNA. In: Industrial Microorganisms: Basic and Applied Molecular Genetics. Eds. Bartz R.H., Hegeman G.D., Scartrud P.L., Washington, DC: ASM, pp. 59–67.

    Google Scholar 

  60. Moll I., Grill S., Gualerzi C.O., Blasi U. 2002. Leaderless mRNA in bacteria: Surprises in ribosomal recruitment and translational control. Mol. Microbiol. 43, 239–246.

    Article  PubMed  CAS  Google Scholar 

  61. Torarinson E., Klenk H.P., Garret R.A. 2005. Divergent transcription and translational signals in Archaea. Environ. Microbiol. 7, 47–54.

    Article  CAS  Google Scholar 

  62. Shean C.S., Gottesman M.E. 1992. Translation of the prophage λ c1 transcript. Cell. 70, 513–522.

    Article  PubMed  CAS  Google Scholar 

  63. Balakin A.G., Skripkin E.A., Shatsky I.N., Bogdanov A.A. 1992. Unusual ribosome binding properties of mRNA encoding bacteriophage λ repressor. Nucleic Acids Res. 20, 563–571.

    PubMed  CAS  Google Scholar 

  64. O’Donnell S.M., Janssen G.R. 2001. Leaderless mRNAs bind 70S ribosomes more strongly than 30S ribosomal subunits in Escherichia coli. J. Bacteriol. 184, 6730–6733.

    Article  CAS  Google Scholar 

  65. Day J.M., Janssen G.R. 2004. Isolation and characterization of ribosomes and translation initiation factors from the gram-positive soil bacterium Streptomyces lividans. J. Bacteriol. 186, 6864–6875.

    Article  PubMed  CAS  Google Scholar 

  66. Udagawa T., Shimizu Y., Ueda T. 2004. Evidence for the translation initiation of leaderless mRNAs by the intact 70S ribosome without its dissociation into subunits in eubacteria. J. Biol. Chem. 279, 8539–8546.

    Article  PubMed  CAS  Google Scholar 

  67. Moll I., Hirokawa G., Kiel M.C., Kaji A., Blasi U. 2004. Translation initiation with 70S ribosomes: An alternative pathway for leaderless mRNAs. Nucleic Acids Res. 32, 3354–3363.

    Article  PubMed  CAS  Google Scholar 

  68. Andreev D.E., Terenin I.M., Dmitriev S.E., Shatsky I.N. 2006. A leaderless mRNA can bind to mammalian 80S ribosomes and direct polypeptide synthesis in the absence of translation initiation factors. Mol. Cell. Biol. 26, 3164–3169.

    Article  PubMed  CAS  Google Scholar 

  69. Komarova A.V., Chufistova L.S., Aseev L.V., Boni I.V. 2005. An Escherichia coli strain producing leaderless mRNA from the chromosomal lac promoter. Bioorg. Khim. 31, 557–560.

    PubMed  CAS  Google Scholar 

  70. Moll I., Grill S., Grundling A., Blasi U. 2002. Effects of ribosomal protein S1, S2 and the DeaD/CsdA DEAD box helicase on translation of leaderless and canonical mRNAs in Escherichia coli. Mol. Microbiol. 44, 1387–1396.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © I.V. Boni, 2006, published in Molekulyarnaya Biologiya, 2006, Vol. 40, No. 4, pp. 658–668.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boni, I.V. Diverse molecular mechanisms of translation initiation in prokaryotes. Mol Biol 40, 587–596 (2006). https://doi.org/10.1134/S002689330604011X

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002689330604011X

Key words

Navigation