Skip to main content
Log in

Biofilm—“City of microbes” or an analogue of multicellular organisms?

  • Review
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

The definition of the term “biofilm” and the validity of the analogy between these structured microbial communities and multicellular organisms are discussed in the review. The mechanisms of biofilm formation, the types of interrelations of the components of biofilms, and the reasons for biofilm resistance to biocides and stress factors are considered in detail. The role of biofilms in microbial ecology and in biotechnology is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zobell, C.E., The Influence of Solid Surfaces Upon the Physiological Activities of Bacteria in Sea Water, J. Bacteriol., 1937, vol. 33, p. 86.

    CAS  Google Scholar 

  2. Zobell, C.E., The Effect of Solid Surfaces Upon Bacterial Activity, J. Bacteriol., 1943, vol. 46, pp. 39–56.

    PubMed  CAS  Google Scholar 

  3. Costerton, J.W., Geesey, G.G., and Cheng, K.J., How Bacteria Stick, Sci. Am., 1978, vol. 238, pp. 86–95.

    PubMed  CAS  Google Scholar 

  4. Zavarzin, G.A., Evolution of Microbial Communities throughout the History Earth, in Problemy doantropogennoi evolyutsii biosfery (Problems of Pre-anthropogenic Biosphere Evolution), Moscow: Nauka, 1993, pp. 212–222.

    Google Scholar 

  5. Zavarzin, G.A., Paradigm Shift in Biology, Vest. Ross. Akad. Nauk, 1995, vol. 65, pp. 8–17.

    Google Scholar 

  6. Costerton, J.W., Overview of Microbial Biofilms, J. Industr. Microbiol., 1995, vol. 15, pp. 137–140.

    Article  CAS  Google Scholar 

  7. O’Toole, G.A., Kaplan, A.H., and Kolter, R., Biofilm Formation as Microbial Development, Annu. Rev. Microbiol., 2000, vol. 4, pp. 49–79.

    Article  Google Scholar 

  8. Watnick, P. and Kolter, R., Biofilm, City of Microbes, J. Bacteriol., 2000, vol. 182, pp. 2675–2679.

    Article  PubMed  CAS  Google Scholar 

  9. Il’ina, T.S., Romanova, Yu.M., and Gintsburg, A.L., Biofilms as a Mode of Existence of Bacteria in External Environment and Host Body: The Phenomenon, Genetic Control, and Regulation Systems of Development, Genetika, 2004, vol. 40, pp. 1445–1456 [Russ. J. Genet. (Engl. Transl.), vol. 40, no. 11, pp. 1189–1198].

    PubMed  CAS  Google Scholar 

  10. Paerl, H.W. and Pinckney, J.L., A Mini-Review of Microbial Consortia: Their Roles in Aquatic Production and Biogeochemical Cycling, Microb. Ecol., 1996, vol. 31, pp. 225–247.

    Article  PubMed  Google Scholar 

  11. Allan, V.J.M., Callow, M.F., Macaskie, L.E., and Paterson-Beedle, M., Effect of Nutrient Limitation and Phosphate Activity of Citrobacter sp., Microbiology (UK), 2002, vol. 148, pp. 277–288.

    CAS  Google Scholar 

  12. Davies, D.G., Parsek, M.R., Pearson, J.P., Iglewski, B.H., Costerton, J.W., and Greenberg, E.P., The Involvement of Cell-To-Cell Signals in the Development of a Bacterial Biofilm, Science, 1998, vol. 280, pp. 295–298.

    Article  PubMed  CAS  Google Scholar 

  13. Ward, D.M., Ferris, M.J., Nold, S.C., and Bateson, M.M., A Natural View of Microbial Biodiversity within Hot Spring Cyanobacterial Mat Communities, Microbiol. Mol. Biol. Rev., 1998, vol. 62, pp. 1353–1370.

    PubMed  CAS  Google Scholar 

  14. MacLeod F.A., Guiot S.R., and Costerton J.W. Layered Structure of Bacterial Aggregates Produced in an Upflow Anaerobic Sludge Bed and Filter Reactor, Appl. Environ. Microbiol., 1990, vol. 56, pp. 1598–1607.

    PubMed  CAS  Google Scholar 

  15. Okabe, S., Ito, T.P., and Satoh, H., Sulfate-Reducing Bacterial Community Structure and Their Contribution to Carbon Mineralization in a Wastewater Biofilm Growing Under Microaerophilic Conditions, Appl. Microbiol. Biotechnol., 2003, vol. 63, pp. 322–334.

    Article  PubMed  CAS  Google Scholar 

  16. Wagner, M., Loy, A., Nogueira, R., Purkhold, U., Lee, N., and Daims, H., Microbial Community Composition and Function in Wastewater Treatment Plants, Antonie van Leeuwenhoek, 2002, vol. 81, pp. 665–680.

    Article  PubMed  CAS  Google Scholar 

  17. Kroes, I., Lepp, P.W., and Relman, D.A., Bacterial Diversity within the Human Subgingival Crevice, Proc. Natl. Acad. Sci. USA, 1999, vol. 96, pp. 14547–14552.

    Article  PubMed  CAS  Google Scholar 

  18. Kolenbrander, P.E., Oral Microbial Communities: Biofilms, Interactions, and Genetic Systems, Annu. Rev. Microbiol., 2000, vol. 54, pp. 413–437.

    Article  PubMed  CAS  Google Scholar 

  19. Kolenbrander, P.E., Andersen, R.N., Blehert, D.S., Egland, P.G., Foster, J.S., and Palmer, R.J., Communication among Oral Bacteria, Microbiol. Mol. Biol. Rev., 2002, vol. 66, pp. 486–505.

    Article  PubMed  CAS  Google Scholar 

  20. Rickard, A.H., Gilbert, P., High, N.J., Kolenbrander, P.E., and Handley, P.S., Bacterial Coaggregation: an Integral Process in the Development of Multi-Species Biofilms, Trends Microbiol., 2003, vol. 11, pp. 94–100.

    Article  PubMed  CAS  Google Scholar 

  21. Stoodley, P., Dodds, I., Boyle, J.D., and Lappin-Scott, H.M., Influence of Hydrodynamics and Nutrients on Biofilm Structure, J. Appl. Microbiol., 1999, vol. 85, pp. 19–28.

    Google Scholar 

  22. Klausen, M., Aaes-Jorgensen, A., Molin, S., and Tolker-Nielsen, T., Involvement of Bacterial Migration in the Development of Complex Multicellular Structures in Pseudomonas aeruginosa Biofilms, Mol. Microbiol., 2003, vol. 50, pp. 61–68.

    Article  PubMed  CAS  Google Scholar 

  23. De Beer, D. and Stoodley, P., Microbial Biofilms, New York: Springer, 2004.

    Google Scholar 

  24. Rice, S.A., Koh, K.S., Queck, S.Y., Labbate, M., Lam, K.W., and Kjelleberg, S., Biofilm Formation and Sloughing in Serratia marcescens Are Controlled by Quorum Sensing and Nutrient Cues, J. Bacteriol., 2005, vol. 187, pp. 3477–3485.

    Article  PubMed  CAS  Google Scholar 

  25. Costerton, J.W., Lewandowski, Z.L., DeBeer, D., Caldwell, D., Korber, D., and James, G., Biofilms, the Customized Microniche, J. Bacteriol., 1994, vol. 1176, pp. 2137–2142.

    Google Scholar 

  26. Karsten, U. and Kuhl, M., Die Mikrobenmatte — das kleinste Ökosystem der Welt, Biologie Unzerer Zeit, 1996, vol. 26, pp. 16–26.

    Article  CAS  Google Scholar 

  27. Branda, S.S., Gonzalez-Pastor, J.E., Ben-Yehuda, S., Losick, R., and Kolter, R., Fruiting Body Formation by Bacillus subtilis, Proc. Natl. Acad. Sci. USA, 2001, vol. 98, pp. 11621–11626.

    Article  PubMed  CAS  Google Scholar 

  28. Morikawa, M., Beneficial Biofilm Formation by Industrial Bacteria Bacillus subtilis and Related Species, J. Biosci. Bioengin., 2006, vol. 101, pp. 1–8.

    Article  CAS  Google Scholar 

  29. Mayser, P., Fromme, S., Leitzmann, C., and Grunder, K., The Yeast Spectrum of the ‘Tea Fungus Kombucha’, Mycoses, 1995, vol. 38, pp. 289–295.

    PubMed  CAS  Google Scholar 

  30. Yurkevich, D.I. and Kutushenko, V.P., Medusomycete (Tea Fungus): Research History, Composition, Physiological and Metabolic Peculiarities, Biofizika, 2002, vol. 47, pp. 1116–1129 [Biopysics (Engl. Transl.), vol. 47, no. 6, pp. 1035–1048].

    CAS  Google Scholar 

  31. Bos, R., van der Mei, H.C., and Busscher, H.J., Physico-Chemistry of Initial Microbial Adhesive Interactions — Its Mechanisms and Methods for Study, FEMS Microbiol. Rev., 1999, vol. 23, pp. 179–230.

    Article  PubMed  CAS  Google Scholar 

  32. Scannapieco, F.A., Torres, G.I., and Levine, M.J., Salivary Amylase Promotes Adhesion of Oral Streptococci To Hydroxyapatite, J. Dent. Res., 1995, vol. 74, pp. 1360–1366.

    PubMed  CAS  Google Scholar 

  33. Davey, M.E. and O’Toole, G.A., Microbial Biofilms: from Ecology to Molecular Genetics, Microbiol. Mol. Biol. Rev., 2000, vol. 64, pp. 847–867.

    Article  PubMed  CAS  Google Scholar 

  34. Van Loosdrecht, M.C.H., Bacterial Adhesion, Wageningen, 1988.

  35. Railkin, A.I., Protsessy kolonizatsii i zashchita ot bioobrastaniya (Colonization Processes and Protection from Biofouling), St. Petersburg: Izd-vo S-Peterburg, un-ta, 1998.

    Google Scholar 

  36. Piette, J.P. and Idziak, E.S., A Model Study of Factors Involved in Adhesion of Pseudomonas fluorescens to Meat, Appl. Environ. Microbiol., 1992, vol. 58, pp. 2783–2791.

    PubMed  CAS  Google Scholar 

  37. O’Toole, G.A. and Kolter, R., Flagellar and Twitching Motility Are Necessary for Pseudomonas aeruginosa Biofilm Development, Mol. Microbiol., 1998, vol. 30, pp. 295–304.

    Article  PubMed  CAS  Google Scholar 

  38. Pratt, L.A. and Kolter, R., Genetic Analysis of Escherichia coli Biofilm Formation: Roles of Flagella, Motility, Chemotaxis and Type I Pili, Mol. Microbiol., 1998, vol. 30, pp. 285–293.

    Article  PubMed  CAS  Google Scholar 

  39. Watnick, P.I. and Kolter, R., Steps in the Development of a Vibrio cholerae Biofilm, Mol. Microbiol., 1999, vol. 34, pp. 586–595.

    Article  PubMed  CAS  Google Scholar 

  40. Sutherland, I.W., Biofilm Exopolysaccharides: a Strong and Sticky Framework, Microbiology (UK), 2001, vol. 147, pp. 3–9.

    CAS  Google Scholar 

  41. Brand, S.S., Vik, A., Friedman, L., and Kolter, R., Biofilms: the Matrix Revisited, Trends Microbiol., 2005, vol. 13, pp. 20–26.

    Article  CAS  Google Scholar 

  42. Webb, J.S., Thompson, L.S., James, S., Charlton, T., Tolker-Nielsen, T., Koch, B., Givskov, M., and Kjelleberg, S., Cell Death in Pseudomonas aeruginosa Biofilm Development, J. Bacteriol., 2003, vol. 185, pp. 4585–4592.

    Article  PubMed  CAS  Google Scholar 

  43. Marshall, K.C, Mechanisms of Bacterial Adhesion at Solid-Water Interfaces, Bacterial adhesion (mechanisms and physiological significance), Savage, D.C. and Fletcher, M., Eds., NY-L: Plenum, 1985, pp. 133–155.

    Google Scholar 

  44. De Flaun, M.F., Oppenheimer, S.R., Streger, S., Condee, C.W., and Fletcher, M., Alteration in Adhesion, Transport and Membrane Characteristics in Adhesuin Deficient Pseudomonad, Appl. Environ. Microbiol., 1999, vol. 65, pp. 759–765.

    Google Scholar 

  45. Waar, K., van der Mei, H.C., Harmsen, J.M., Degener, J.E., and Busscher, H.J., Adhesion of Bile Drain Materials and Physicochemical Surface Properties of Enterococcus faecalis Strains Grown in the Presence of Bile, Appl. Environ. Microbiol, 2002, vol. 68, pp. 3855–3858.

    Article  PubMed  CAS  Google Scholar 

  46. Busalmen, J.P. and de Sanchez, S.R., Influence of pH and Ionic Strength on Adhesion of a Wild Strain of Pseudomonas sp. to Titanium, J. Ind. Microbiol. Biotechnol, 2001, vol. 26, pp. 303–308.

    Article  PubMed  CAS  Google Scholar 

  47. Van Schie, P.M. and Fletcher, M., Adhesion of Biodegradative Anaerobic Bacteria to Solid Surfaces, Appl. Environ. Microbiol., 1999, vol. 65, pp. 5082–5088.

    PubMed  Google Scholar 

  48. McEldowney, S. and Fletcher, M., Effect of pH, Temperature and Growth Condition on the Adhesion of a Gliding Bacterium and Three Nongliding Bacteria to Polysterene, Microbiol. Ecol., 1988, vol. 16, pp. 183–195.

    Article  Google Scholar 

  49. La Paglia, C. and Hartzell, P., Stress-Induced Production of Biofilm in the Hyperthermophile Archaeoglobus fulgidus, Appl. Environ. Microbiol., 1997, vol. 63, pp. 3158–3163.

    Google Scholar 

  50. Gordon, A.S. and Millero, F.J., Electrolite Effect of an Estuarine Bacterium, Appl. Environ. Microbiol., vol. 47, pp. 495–499.

  51. Rachid, S., Ohlsen, K., Witte, W., Hacker, J., and Ziebuhr, W., Effect of Subinhibitory Antibiotic Concentrations on Polysaccharide Intercellular Adhesion Expression in Biofilm-Forming Staphylococcus epidermidis, Antimicrob. Agents Chemoter., 2000, vol. 44, pp. 3357–3363.

    Article  CAS  Google Scholar 

  52. Morgan, P. and Dow, S, Bacterial Adaptation for Growth in Low Nutrient Environments, Microbes in extreme environments, Herbert, R.A. and Codd, G.A., Eds., 1987, L: Academic, pp. 187–214.

    Google Scholar 

  53. Jefferson, K.K., What Drives Bacteria to Produce a Biofilm?, FEMS Microbiol. Letts., 2004, vol. 236, pp. 163–173.

    CAS  Google Scholar 

  54. Stanley, N.R., Britton, R.A., Grossmann, A.D., and Lazazzera, B.A., Identification of Catabolite Repression as a Physiological Regulator of Biofilm Formation by Bacillus subtilis by Use of DNA Microarrays, J. Bacterol., 2003, vol. 185, pp. 1951–1957.

    Article  CAS  Google Scholar 

  55. Prigent-Combaret, C., Brombacher, E., Vidal, O., Ambert, A., Leieune, Ph., Landini, P., and Dorel, C., Complex Regulatory Network Controls Initial Adhesion and Biofilm Formation in Escherichia coli Via Regulation of the CsdD Gene, J. Bacteriol., 2001, vol. 183, pp. 7213–7223.

    Article  PubMed  CAS  Google Scholar 

  56. Otto, K. and Silhavy, T.J., Surface Sensing and Adhesion of Escherichia coli Controlled by Cpx-Signalling Pathway, Proc. Natl. Acad. Sci. USA, 2002, vol. 99, pp. 2287–2292.

    Article  PubMed  CAS  Google Scholar 

  57. Conlon, K.M., Humphreys, H., and O’Gara, J.P., IcaR Encodes a Transcriptional Repressor Involved in Environmental Regulation of ica Operon Expression and Biofilm Formation by Staphylococcus epidermis, J. Bacteriol., 2002, vol. 184, pp. 4400–4408.

    Article  PubMed  CAS  Google Scholar 

  58. Wen, Z.T. and Burne, R.A., Functional Genomics Approach to Identifying Genes Required for Biofilm Development by Streptococcus mutants, Appl. Environ. Microbiol., 2002, vol. 68, pp. 1196–1203.

    Article  PubMed  CAS  Google Scholar 

  59. London, J., Bacterial Adhesines, Ann. Rep. Med. Chem., 1991, vol. 26, pp. 229–237.

    Article  Google Scholar 

  60. Burshard, R.P. and Sorongon, M.L., A Gliding Bacterium Strain Inhibits Adhesion and Motility of Another Gliding Bacterium Strain in Marine Biofilm, Appl. Environm. Microbiol., 1998, vol. 64, pp. 4079–4083.

    Google Scholar 

  61. Nikolaev, Yu.A., Prosser, Dzh.I., and Vittli, R.I., Regulation of the Adhesion of Pseudomonas fluorescens Cells to Glass by Extracellular Volatile Compounds, Mikrobiologiya, 2000, vol. 69, no. 3, pp. 352–355 [Microbiology (Engl. Transl.), vol. 69, no. 3, pp. 287–290].

    Google Scholar 

  62. Nikolaev, Yu.A., Panikov, N.S., Lukin, S.M., and Osipov, G.A., Saturated C21–C33 Hydrocarbons Are Involved in the Self-Regulation of Pseudomonas fluorescens Adhesion to a Glass Surface, Mikrobiologiya, 2001, vol. 70, no. 2, pp. 174–181 [Microbiology (Engl. Transl.), vol. 70, no. 2, pp. 138–144].

    Google Scholar 

  63. Nikolaev, Yu.A. and Panikov, N.S., Extracellular Protease as a Reversible Adhesion Regulator in Pseudomonas fluorescens, Mikrobiologiya, 2002, vol. 71, no. 5, pp. 629–634 [Microbiology (Engl. Transl.), vol. 71, no. 5, pp. 541–545].

    Google Scholar 

  64. Stoodley, P., Wilson, S., Hall-Stoodley, L., Boyle, J.D., Lappin-Scott, H.M., and Costerton, J.W., Growth and Detachment of Cell Clusters from Mature Mixed-Species Biofilms, Appl Environ Microbiol., 2001, vol. 67, pp. 5608–5613.

    Article  PubMed  CAS  Google Scholar 

  65. Bockelman, U., Szewzyk, U., and Grohmann, E., A New Enzymatic Method for the Detachment of Particle Associated Soil Bacteria, J. Microbiol. Methods, 2003, vol. 55, pp. 201–211.

    Article  CAS  Google Scholar 

  66. Kaplan, J.B., Meyenhofer, M.F., and Fine, D.H., Biofilm Growth and Detachment of Actinobacillus actinomycetemcomitans, J. Bacteriol., 2003, vol. 185, pp. 1399–1404.

    Article  PubMed  CAS  Google Scholar 

  67. Kaplan, J.B., Ragunath, C., Ramasubbu, N., and Fine, D.H., Detachment of Actinobacillus actinomycetemcomitans Biofilm Cells by an Endogenous Beta-Hexosaminidase Activity, J. Bacteriol., 2003, vol. 185, pp. 4693–4698.

    Article  PubMed  CAS  Google Scholar 

  68. Batrakov, S.G., Rodionova, T.A., Esipov, S.E., Polyakov, N.B., Sheichenko, V.I., Shekhovtsova, N.V., Lukin, S.M., Panikov, N.S., and Nikolaev, Yu.A., A Novel Lipopeptide, an Inhibitor of Bacterial Adhesion, from the Thermophilic and Halotolerant Subsurface Bacillus licheniformis Strain 603, Biochim. Biophys. Acta, 2003, vol. 1634, pp. 107–115.

    PubMed  CAS  Google Scholar 

  69. Mireles, J.R., Toguchi, A., and Harshey, R.M., Salmonella enterica Serovar typhimurium Swarming Mutants with Altered Biofilm-Forming Abilities: Surfactin Inhibits Biofilm Formation, J. Bacteriol., 2001, vol. 183, pp. 5848–5854.

    Article  PubMed  CAS  Google Scholar 

  70. Van Hoogmoed, C.G., van der Kuij-Booij M., van der Mei H.C., Busscher H.J. Inhibition of Strteptococcus mutans NS Adhesion with and without a Salivary Conditioning Film by Biosurfactant-Releasing Streptococcus mitis Strains, Appl. Environ. Microbiol., 2000, vol. 66, pp. 659–663.

    Article  PubMed  Google Scholar 

  71. Millsap, K., Reid, G., van der Mei, H.C., and Busscher, H.J., Displacement of Enterococcus faecalis from Hydrophobic and Hydrophilic Substrata by Lactobacillus and Streptococcus spp. As Studied in a Parallel Plate Flow Chamber, Appl. Environ. Microbiol., 1994, vol. 60, pp. 1867–1874.

    PubMed  CAS  Google Scholar 

  72. Velraeds, M.M., van der Mei, H.C., Reid, G., and Busscher, H.J., Inhibition of Initial Adhesion of Uropathogenic Enterococcus faecalis by Biosurfactants from Lactobacillus Isolates, Appl. Environ. Microbiol., 1996, vol. 62, pp. 1958–1963.

    PubMed  CAS  Google Scholar 

  73. Maximilien, R., de Nys, R., Holmstrom, C., Gram, L., Crass, K., Kjelleberg, S., and Steinberg, P.D., Chemical Mediation of Bacterial Surface Colonisation by Secondary Metabolites from the Red Alga Delisa pulchra, Aquat. Microb. Ecol, 1998, vol. 15, pp. 233–246.

    Google Scholar 

  74. Davey, M.E., Caiazza, N.C., and O’Toole, G.A., Rhamnolipid Surfactant Production Affects Biofilm Architecture in Pseudomonas aeruginosa PAOI, J. Bacteriol., 2003, vol. 185, pp. 1027–1036.

    Article  PubMed  CAS  Google Scholar 

  75. Sutherland, I.W., Hughes, K.A., Skillman, L.C., and Tait K. The Interaction of Phage and Biofilms, FEMS Microbiol. Letts., 2004, vol. 2, pp. 1–6.

    Article  CAS  Google Scholar 

  76. De Beer, D, Use of Microelectrodes to Measure in situ Microbial Activities in Biofilms, Sediments and Microbial Mats, Molecular Microbial Ecology, Akkermans, A.D.L. et al., Eds., Kluwer, 1999, pp. 67–81.

  77. Starman, P.J., Jones, W.L., and Characklis, W.G., Interspecies Competition in Colonized Porous Pellets, Water Res., 1994, vol. 28, pp. 831–839.

    Article  Google Scholar 

  78. Banks, M.K. and Bryers, J.D., Bacterial Species Dominance within a Binary Culture Biofilm, Appl. Environ. Microbiol., 1991, vol. 16, pp. 543–550.

    Google Scholar 

  79. Odenyo, A.A., Makie, R.I., Stahl, D.A., and White, B.A., The Use of 16S rRNA-Targeted Oligonucleotide Probes to Study Competition between Ruminal Fibrolytic Bacteria: Development of Probes for Ruminococcus Species and Evidence for Bacteriocin Production, Appl. Environ. Microbiol., vol. 60, pp. 3688–3696.

  80. Lee, W., Lewandowski, Z., Morrison, M., Characklis, W.G., Avei, R., and Niclsen, P.H., Corrosion of Mild Steel Underne ath Aerobic Biofilms Containing Sulfate Reducing Bacteria, Biofouling, 1993, vol. 7, pp. 197–239.

    Article  CAS  Google Scholar 

  81. Wolin, M.J. and Miller, T.L., Microbe-Microbe Interactions, The rumenmicrobial ecosystem, Hobson, P.N., Ed., New York: Elsevier Science Publ, 1988, pp. 121–132.

    Google Scholar 

  82. Weimer, P.J., Cellulose Degradation by Ruminal Microorganisms, Crit. Rev. Biotechnol., vol. 12, pp. 189–223.

  83. Stoodley, P., Sauer, K., Davies, D.G., and Costerton, J.W., Biofilms As Complex Differentiated Communities, Annu. Rev. Microbiol., 2002, vol. 56, pp. 187–209.

    Article  PubMed  CAS  Google Scholar 

  84. Van Elsas, J.D. and Bailey, M.J., The Ecology of Transfer of Mobile Genetic Elements, FEMS Microbiol. Ecol., 2002, vol. 42, pp. 183–197.

    Google Scholar 

  85. Hayes, F., Toxins-Antitoxins: Plasmid Maintenance, Programmed Cell Death and Cell Cycle Arrest, Science, 2003, vol. 301, pp. 1496–1499.

    Article  PubMed  CAS  Google Scholar 

  86. Haagensen, J.A.J., Hansen, S.K., Jchansen, T., and Molin, S., In Situ Detection of Horizontal Transfer of Mobile Genetic Elements, FEMS Microbiol. Ecol., 2002, vol. 42, pp. 261–268.

    Article  CAS  PubMed  Google Scholar 

  87. Nielsen, A.T., Tolker-Nielsen, T., Barken, K.B., and Molin, S., Role of Commensal Relationships on the Spatial Structure of a Surface-Attached Microbial Consortium, Environ. Microbiol, 2000, vol. 2, pp. 59–68.

    Article  PubMed  CAS  Google Scholar 

  88. Cochran, W.L., McFeters, G.A., and Stewart, P.S., Reduced Susceptibility of Thin Pseudomonas aeruginosa Biofilms to Hydrogen Peroxide and Monochloramine, J. Appl. Microbiol., 2000, vol. 88, pp. 22–30.

    Article  PubMed  CAS  Google Scholar 

  89. Oosthuizen, M.C., Steyn, B., Theron, J., Cossete, P., Lindsay, D., von Holy, A., and Brozel, V.S., Proteomic Analysis Reveals Differential protein Expression by Bacillus cereus During Biofilm Formation, Appl. Environ. Microbiol., 2002, vol. 68, pp. 2770–2780.

    Article  PubMed  CAS  Google Scholar 

  90. Heydom, A., Ersboll, B., Kato, J., Hentzer, M., Parsek, M.R., Tolker-Nielsen, T., Givskov, M., and Molin, S., Statistical Analysis of Pseudomonas aeruginosa Biofilms Development: Impact of Mutations in Genes Involved in Twitching Motility, Cell-To-Cell Signaling, and Stationary-Phase Sigma Factor Expression, Appl. Environ. Microbiol, 2002, vol. 68, pp. 2008–2017.

    Article  CAS  Google Scholar 

  91. Klevit, T.R.D., Gillis, R., Marx, S., Brown, C., and Iglewski, B.H., Quorum-Sensing Genes in Pseudomonas aeruginosa Biofilms: Ther Role and Expression Pattern, Appl. Environ. Microbiol., 2001, vol. 67, pp. 1865–1873.

    Article  Google Scholar 

  92. Rick, W.Ye., Tao Wang., Bedzyk, L., and Croker, K.M., Application of DNA Microarrays in Microbial Systems, J. Microb. Methods, 2001, vol. 47, pp. 257–272.

    Article  Google Scholar 

  93. Ren, D., Bedzyk, L.A., Thomas, S.M., Ye, R.W., and Wood, T.K., Gene Expression in Escherichia coli Biofilms, Appl. Microbiol. Biotechnol., 2004, vol. 64, pp. 515–524.

    Article  PubMed  CAS  Google Scholar 

  94. Whiteley, M., Bangera, M.G., Bumgarner, R.E., Parsek, M.R., Teitzel, G.M., Lory, S., and Greenberg, E.P., Gene Expression in Pseudomonas aeruginosa Biofilm, Nature, 2001, vol. 413, pp. 860–864.

    Article  PubMed  CAS  Google Scholar 

  95. Olson, M.E., Ceri, H., Morck, D.W., Buret, A.G., and Read, R.R., Biofilm Bacteria: Formation and Comparative Susceptibility To Antibiotics, Can. J. Vet. Res., 2002, vol. 66, pp. 86–92.

    PubMed  Google Scholar 

  96. Lewis, K., Persister Cells and the Riddle of Biofilm Survival, Biokhimiya, 2005, vol. 70, pp. 327–336 [Biochemistry (Moscow) (Engl. Transl.), vol. 70, no. 2, pp. 267–275].

    Google Scholar 

  97. Mah, T.F., Pitts, B., Pellock, B., Walker, G.C., Stewart, P.S., and O’Toole, G.A., A Genetic Basis for Pseudomonas aeruginosa Biofilm Antibiotic Resistance, Nature, 2003, vol. 426, pp. 306–310.

    Article  PubMed  CAS  Google Scholar 

  98. Hoffman, L.R. and D’Argenio, D.A., MacCoss M.J., Zhang Z., Jones R.A., and Miller S.I., Aminoglycoside Antibiotics Induce Bacterial Biofilm Formation, Nature, 2005, vol. 436, pp. 1171–1175.

    Article  PubMed  CAS  Google Scholar 

  99. De Kievit, T.R., Parkins, M.D., Gillis, R.J., Srikumar, R., Ceri, H., Poole, K., Iglewski, B.H., and Storey, D.G., Multidrug Efflux Pumps: Expression Patterns and Contribution to Antibiotic Resistance in Pseudomonas aeruginosa Biofilms, Antimicrob. Agent. Chem., 2001, vol. 45, pp. 1761–1770.

    Article  Google Scholar 

  100. Ramage, G., Bachmann, S., Patterson, T.F., Wickes, B.L., and Lopes-Ribot, J.L., Investigation of Multidrug Efflux Pumpsin Relation to Fluconazole Resistamce in Candida albicans Biofilms, J. Antibiot. Chemother., 2002, vol. 49, pp. 973–980.

    Article  CAS  Google Scholar 

  101. Baillie, G.S. and Douglas, L.J., Effect of Growth Rate on Resistance of Candida albicans Biofilms to Antifungal Agents, Antimicrob. Agents Chemother., 1998, vol. 42, pp. 1900–1905.

    PubMed  CAS  Google Scholar 

  102. Roberts, M.E. and Stewart, P.S., Modeling Antibiotic Tolerance in Biofilm by Accounting for Nutrient Limitation, Antimicrob. Agents Chemother., 2004, vol. 48, pp. 48–52.

    Article  PubMed  CAS  Google Scholar 

  103. Balaban, N.Q., Merrin, J., Chait, R., Kowalik, L., and Leibler, S., Bacterial Persistence as a Phenotypic Switch, Science, 2004, vol. 305, no. (5690), pp. 1622–1625.

    Article  PubMed  CAS  Google Scholar 

  104. Bigger, J.W., Treatment of Staphylococcal Infections with Penicillin, Lancet, 1944, vol. 11, pp. 497–500.

    Article  Google Scholar 

  105. Moyed, H.S. and Bertrand, K.P., hipA, a Newly Recognized Gene of Escherichia coli K-12 That Affects Frequency of Persistence after Inhibition of Murein Synthesis, J. Bacteriol., 1983, vol. 155, pp. 768–775.

    PubMed  CAS  Google Scholar 

  106. Spoering, A.L. and Lewis, K., Biofilm and Planktonic Cells of Pseudomonas aeruginosa Have Similar Resistance to Killing by Antimicrobials, J. Bacteriol., 2001, vol. 183, pp. 6746–6751.

    Article  PubMed  CAS  Google Scholar 

  107. Keren, I., Kaldalu, N., Spoering, A., Wang, Y., and Lewis, K., Persister Cells and Tolerance to Antimicrobials, FEMS Microbiol. Letts., 2004, vol. 230, pp. 13–18.

    Article  CAS  Google Scholar 

  108. Keren, I., Shah, D., Spoering, A., Kaldalu, N., and Lewis, K., Specialized Persister Cells and the Mechanism of Multidrug Tolerance in Escherichia coli, J. Bacteriol., 2004, vol. 186, pp. 8172–8180.

    Article  PubMed  CAS  Google Scholar 

  109. Levis, K., Pathogen Resistance as the Origin of Kin Altruism, J. Theor. Biol., 1998, vol. 193, pp. 359–363.

    Article  Google Scholar 

  110. Kussel, E., Kishony, R., Balaban, N.Q., and Leibler, S., Bacterial Persistence: a Model of Survival in Changing Environments, Genetics, 2005, vol. 169, pp. 1807–1814.

    Article  Google Scholar 

  111. Cogan, N.G., Effect of Persister Formation on Bacterial Response to Dosing, J. Theor. Biol., 2006, vol. 238, pp. 694–703.

    Article  PubMed  CAS  Google Scholar 

  112. Wiuff, C., Zappala, R.M., Regoes, R.R., Garner, K.N., Baquero, F., and Levin, B.R., Phenotypic Tolerance: Antibiotic Enrichment of Noninherited Resistance in Bacterial Populations, Antimicrob. Agents. Chemother., 2005, vol. 49, pp. 1483–1494.

    Article  PubMed  CAS  Google Scholar 

  113. Harrison, J.J., Ceri, H., Roper, N.J., Badry, E.A., Sproule, K.M., and Turner, R.J., Persister Cells Mediate Tolerance to Metal Oxyanions in Escherichia coli, Microbiology (UK), 2005, vol. 151, pp. 3181–3195.

    Article  CAS  Google Scholar 

  114. Harrison, J.J., Turner, R.J., and Ceri, H., Persister Cells, the Biofilm Matrix and Tolerance to Metal Cations in Biofilm and Planktonic Pseudomonas aeruginosa, Environ. Microbiol., 2005, vol. 7, pp. 981–994.

    Article  PubMed  CAS  Google Scholar 

  115. Lappin-Scott, H.M., Bass, C.J., McAlpine, K.M., and Sanders, P.F., Survival Mechanismds of Hydrogen Sulfide-Producing Bacteria Isolated from Extreme Environments and Their Role in Corrosion, Int. Biodeterior. Biodeg., 1994, vol. 34, pp. 305–319.

    Article  CAS  Google Scholar 

  116. Costerton, J.W and Stoodley, P, Microbial Biofilms: Protective Niches in Ancient and Modern Geomicrobiology, Fossil and Recent Biofilms: a Natural History of Life on Earth, Krumbein, W.E., Paterson, D.M., and Zavarzin, G.A., Eds., Dordrecht: Kluwer, 2003, preface.

    Google Scholar 

  117. Golovlev, E.L., The Mechanism of Formation of Pseudomonas aeruginosa Biofilm, a Type of Structured Population, Mikrobiologiya, 2002, vol. 71, no. 3, pp. 293–300 [Microbiology (Engl. Transl.), vol. 71, no. 3, pp. 249–254].

    CAS  Google Scholar 

  118. Lee, A.K. and Newman, D.K., Microbial Iron Respiration: Impacts on Corrosion Processes, Appl. Microbiol. Biotechnol., 2003, vol. 62, pp. 134–139.

    Article  PubMed  CAS  Google Scholar 

  119. Zoo, R., Ornek, D., Syrett, B.C., Green, R.M., Hsu, C.H., Mansfeld, F.B., and Wood, T.K., Inhibiting Mild Steel Corrosion from Sulfate-Reducing Bacteria Using Antimicrobial-Producing Biofilms in Three-Mile-Island Process Water, Appl. Microbiol. Biotechnol., 2004, vol. 64, pp. 275–283.

    Article  CAS  Google Scholar 

  120. Molina, M.A., Ramos, J.-L., and Espinosa-Urgel, M., Plant-Associated Biofilms, Rev. Environ. Sci. Biotechnol., 2003, vol. 2, pp. 99–108.

    Article  Google Scholar 

  121. Bais, H.P., Fall, R., and Vivanco, J.M., Biocontrol of Bacillus subtilis Against Infection of Arabidopsis Roots by Pseudomonas syringae Is Facilitated by Biofilm Formation and Surfacin Production, Plant. Physiol., 2004, vol. 134, pp. 307–319.

    Article  PubMed  CAS  Google Scholar 

  122. Yan, L., Boyd, K.G., and Burgess, J.G., Surface Attachment Induced Production of Antimicrobial Compounds by Marine Epiphytic Bacteria Using Modified Roller Bottle Cultivation, Marin. Biotechnol., 2002, vol. 4, pp. 356–366.

    Article  CAS  Google Scholar 

  123. Yan, L., Boyd, K.G., Adams, D.R., and Burgess, J.G., Biofilm-Specific Cross-Species Induction of Antimicrobial Compound in Bacilli, Appl. Environ. Microbiol., 2003, vol. 69, pp. 3719–3727.

    Article  PubMed  CAS  Google Scholar 

  124. Matz, C. and Kjelleberg, S., Off the Hook-How Bacteria Survive Protozoan Grazing, Trends Microbiol., 2005, vol. 13, pp. 302–307.

    Article  PubMed  CAS  Google Scholar 

  125. Thompson, I.P., van der Gast, C.J., Ciric, L., and Singer, A.C., Bioaugmentation for Bioremediation: the Challenge of Strain Selection, Environ. Microbiol., 2005, vol. 7, pp. 909–915.

    Article  PubMed  CAS  Google Scholar 

  126. Sanders, P.F and Sturman, P.J, Biofouling in Oil Industry, Petroleum Microbiology, Ollivier, B. and Magot, M., Eds., Washington, DC: ASM Press, 2005, pp. 171–198.

    Google Scholar 

  127. Shapiro, J.A., Thinking About Bacterial Populations as Multicellular Organisms, Annu. Rev. Microbiol., 1998, vol. 52, pp. 81–104.

    Article  PubMed  CAS  Google Scholar 

  128. Kreft, J.U, Biofilms Promote Altruism, Biofilm 2003. ASM conferences 2003, Washington: ASM Press. p. 25A.

  129. Caldwell, D.E., Post-Modem Ecology—Is the Environment the Organism?, Environ. Microbiol., 1999, vol. 1, pp. 279–281.

    Article  PubMed  CAS  Google Scholar 

  130. Rice, K.C. and Bayles, K.W., Death’s Toolbox: Examining the Molecular Components of Bacterial Programmed Cell Death, Mol. Microbiol., 2003, vol. 50, pp. 729–738.

    Article  PubMed  CAS  Google Scholar 

  131. Gordeeva, A.V., Labas, Yu.A., and Zvyagil’skaya, R.A., Apoptosis in Unicellular Organisms: Mechanisms and Evolution, Biokhimiya, 2004, vol. 69, pp. 1301–1313 [Biochemistry (Moscow) (Engl. Transl., vol. 69, no. 10, pp. 1055–1066).

    Google Scholar 

  132. Bayles, K.W., Are the Molecular Strategies That Control Apoptosis Conserved in Bacteria?, Trends Microbiol., 2003, vol. 11, pp. 306–311.

    Article  PubMed  CAS  Google Scholar 

  133. Wimpenny, J., Manz, W., and Szewzyk, U., Heterogeneity in Biofilms, FEMS Microbiol. Lett., 2000, vol. 24, pp. 661–671.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Nikolaev.

Additional information

Original Russian Text © Yu. A. Nikolaev, V.K. Plakunov, 2007, Published in Mikrobiologiya, 2007, Vol. 76, No. 2, pp. 149–163.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikolaev, Y.A., Plakunov, V.K. Biofilm—“City of microbes” or an analogue of multicellular organisms?. Microbiology 76, 125–138 (2007). https://doi.org/10.1134/S0026261707020014

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261707020014

Key words

Navigation