Skip to main content
Log in

Specific Features of the Liquid-Phase Hydrogenation of 2-Butyne-1,4-Diol under the Action of Palladium–Phosphorus Particles

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

Efficient catalyst systems based on Pd–P particles for the chemoselective hydrogenation of 2‑butyne-1,4-diol, which are superior to Ziegler-type systems in turnover frequency under mild conditions, have been proposed. The introduction of phosphorus into the composition of palladium nanoparticles makes it possible to maintain a nearly 100% 2-butene-1,4-diol selectivity up to a 90% alkynediol conversion and affects the ratio between the hydrogenation rates of the triple and double bonds of alkynediol. Poly(N-vinylpyrrolidone) increases the aggregative stability of Pd–P particles during their functioning; however, it has hardly any effect on the activity and selectivity in 2-butyne-1,4-diol hydrogenation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Ananikov, V.P., Khemchan, L.L., Ivanova, Yu.V., Bukhtiyarov, V.I., Sorokin, A.M., Prosvirin, I.P., Vatsadze, S.Z., Medved’ko, A.V., Nuriev, V.N., Dil’man, A.D., Levin, V.V., Koptyug, I.V., Kovtunov, K.V., Zhivonitko, V.V., Likholobov, V.A., et al., Russ. Chem. Rev., 2014, vol. 83, no. 10, p. 885.

    Article  Google Scholar 

  2. Vile, G., Albani, D., Almora-Barrios, N., Lopez, N., and Perez-Ramirez, J., ChemCatChem, 2016, vol. 8, p. 21.

    Article  CAS  Google Scholar 

  3. Kundr, M., Sultan, B.B.M., Ng, D., Wang, Y., Alexander, D.L.J., Nguyen, X., Xie, Z., and Hornung, C.H., Chem. Eng. Process., 2020, vol. 154, p. 108018.

    Article  Google Scholar 

  4. Ge, L., Wu, X., Chen, J., and Wu, J., J. Biomater. Nanobiotechnol., 2011, vol. 2, p. 335.

    Article  CAS  Google Scholar 

  5. Gräfje, H., Körnig, W., Weitz, H.-M., Reiß, W., Steffan, G., Diehl, H., Bosche, H., Schneider, K., and Kieczka, H., Butanediols, Butenediol, and Butynediol in Ullmann’s Encyclopedia of Industrial Chemistry, Weinheim: Wiley, 2000, p. 180.

    Google Scholar 

  6. Huang, C.-F., Jiang, Y.-F., Guo, G.-L., and Hwang, W.-S., Biores. Technol., 2013, vol. 135, p. 446.

    Article  CAS  Google Scholar 

  7. White, Wm. C., Chem. Biol. Interact., 2007, vol. 166, nos. 1–3, p. 10.

    Article  CAS  Google Scholar 

  8. Pyatnitsyna, E.V. and El’chaninov, M.M., Russ. J. Appl. Chem., 2013, vol. 86, no. 3, p. 394.

    Article  CAS  Google Scholar 

  9. Duncanson, I.T., Sutherland, I.W., Cullen, B., Jackson, S.D., and Lennon, D., Catal. Lett., 2005, vol. 103, nos. 3–4, p. 195.

    Article  CAS  Google Scholar 

  10. Musolino, M.G., Cutrupi, C.M.S., Donato, A., Pietropaolo, D., and Pietropaolo, R., J. Mol. Catal. A: Chem., 2003, vol. 195, nos. 1–2, p. 147.

    Article  CAS  Google Scholar 

  11. Shu, M., Shi, C., Yu, J., Chen, X., Liang, C., and Si, R., Catal. Sci. Technol., 2020, vol. 10, no. 2, p. 327.

    Article  CAS  Google Scholar 

  12. Lara, S.A.G., Natividad, R., Vilchis-Nestor, A.R., Lopez-Castanares, R., Garcia-Orozco, I.,·Gonzalez-Pedroza, M.G., and Morales-Luckie, R.A., Catal. Lett., 2019, vol. 149, no. 12, p. 3447.

    Article  Google Scholar 

  13. Liu, Y., McCue, A.J., Miao, C., Feng, J., Li, D., and Anderson, J.A., J. Catal., 2018, vol. 364, p. 406.

    Article  CAS  Google Scholar 

  14. Prins, R. and Bussell, M.E., Catal. Lett., 2012, vol. 142, no. 12, p. 1413.

    Article  CAS  Google Scholar 

  15. Yang, P., Jiang, Z., Ying, P., and Li, C., J. Catal., 2008, vol. 253, no. 1, p. 66.

    Article  CAS  Google Scholar 

  16. Oyama, S.T., Gott, T., Zhao, H., and Lee, Y.-K., Catal. Today, 2009, vol. 143, p. 94.

    Article  CAS  Google Scholar 

  17. Bowker, R.H., Smith, M.C., Carrillo, B.A., and Bussell, M.E., Top. Catal., 2012, vol. 55, nos. 14–15, p. 999.

    Article  CAS  Google Scholar 

  18. Savithra, G.H.L., Bowker, R.H., Carrillo, B.A., Bussell, M.E., and Brock, S.L., ACS Appl. Mater. Interf., 2013, vol. 5, no. 12, p. 5403.

    Article  Google Scholar 

  19. Xiong, R., Zhao, W., Wang, Z., and Zhang, M., Mol. Catal., 2021, vol. 500. 111332.

    Article  CAS  Google Scholar 

  20. Albani, D., Karajovic, K., Tata, B., Li, Q., Mitchell, S., López, N., and Pérez-Ramírez, J., ChemCatChem, 2018, vol. 10, p. 1.

    Article  Google Scholar 

  21. Belykh, L.B., Skripov, N.I., Belonogova, L.N., Umanets, V.A., and Shmidt, F.K., Kinet. Catal., 2010, vol. 51, no. 1, p. 42.

    Article  CAS  Google Scholar 

  22. Belykh, L.B., Skripov, N.I., Sterenchuk, T.P., Gvozdovskaya, K.L., Sanzhieva, S.B., and Schmidt, F.K., J. Nanopart. Res., 2019, vol. 21, no. 9, p. 198.

    Article  Google Scholar 

  23. Skripov, N.I., Belykh, L.B., Sterenchuk, T.P., Gvozdovskaya, K.L., Zherdev, V.V., Dashabylova, T.M., and Schmid, F.K., Kinet. Catal., 2020, vol. 61, no. 4, p. 575.

    Article  CAS  Google Scholar 

  24. Sterenchuk, T.P., Belykh, L.B., Skripov, N.I., Sanzhieva, S.B., Gvozdovskaya, K.L., and Schmidt, F.K., Kinet. Catal., 2018, vol. 59, no. 5, p. 585.

    Article  CAS  Google Scholar 

  25. Gordon, A.J. and Ford, R.A., The Chemist’s Companion, New York: Wiley, 1972.

    Google Scholar 

  26. Matthews, J.C., Nashua, N.H., and Wood, L.L, US Patent 3474464, 1969.

  27. Finney, E.E. and Finke, R.G., J. Colloids Interface Sci., 2008, vol. 317, p. 351.

    Article  CAS  Google Scholar 

  28. Gusev, A.I., Nanomaterialy, nanostruktury, nanotekhnologii (Nanomaterials, Nanostructures, and Nanotechnologies), Moscow: Nauka-Fizmatlit, 2007, 2nd ed.

  29. Belykh, L.B., Skripov, N.I., Sterenchuk, T.P., Akimov, V.V., Tauson, V.L., and Schmidt, F.K., Russ. J. Gen. Chem., 2016, vol. 86, no. 9, p., 2022.

  30. Carenco, S., Leyva-Perez, A., Concepcion, P., Boissiere, C., Mezailles, N., Sanchez, C., and Corma, A., Nano Today, 2012, vol. 7, p. 21.

    Article  CAS  Google Scholar 

  31. Liu, Y., McCue, A.J., Miao, C., Feng, J., Li, D., and Anderson, J.A., J. Catal., 2018, vol. 364, p. 406.

    Article  CAS  Google Scholar 

  32. Shmidt, A.F., Kurokhtina, A.A., and Larina, E.V., Kinet. Catal., 2019, vol. 60, no. 5, p. 551.

    Article  Google Scholar 

  33. Stojewski, M., Kowalska, J., and Jurczakowski, R., J. Phys. Chem. C, 2009, vol. 113, no. 9, p. 3707.

    Article  Google Scholar 

  34. Nikolaev, S.A., Zanaveskin, L.N., Smirnov, V.V., Averyanov, V.A., and Zanaveskin, K.L., Russ. Chem. Rev., 2009, vol. 78, p. 231.

    Article  CAS  Google Scholar 

  35. Roberts, J.D. and Caserio, M.C., Basic Principles of Organic Chemistry, Benjamin, 1977. 400 c.

    Google Scholar 

  36. Markov, P.V., Mashkovsky, I.S., Bragina, G.O., Warna, J., Gerasimov, E.Yu., Bukhtiyarov, V.I., Stakheev, A.Yu., and Murzin, D.Yu., Chem. Eng. J., 2019, vol. 358, p. 520.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

T.P. Sterenchuk thanks the Ministry of Education and Science of the Russian Federation for the scholarship (SP-1847.2021.1). Electronic images of the catalyst samples were recorded using an electron microscope of the Center for collective use “Baikal Center of Nanotechnologies” of Irkutsk National Research Technical University.

Funding

This work was performed within the framework of the Government Assignment for Scientific Research from the Ministry of Education and Science of the Russian Federation (agreement no. 075-03-2020-176/3; project code in Parus 8: FZZE-2020-0022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. B. Belykh.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Timoshinina

Abbreviations and notation: TOF, turnover frequency; BYD, 2-butyne-1,4-diol; BED, 2-butene-1,4-diol; BAD, 1,4-butanediol; DMF, N,N-dimethylformamide; GLC, gas–liquid chromatography; PVP, poly(N-vinylpyrrolidone); TEM, transmission electron microscopy; HRTEM, high-resolution transmission electron microscopy; CSR, coherent scattering region; FFT, fast Fourier transform; XRD, X-ray diffraction analysis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skripov, N.I., Belykh, L.B., Sterenchuk, T.P. et al. Specific Features of the Liquid-Phase Hydrogenation of 2-Butyne-1,4-Diol under the Action of Palladium–Phosphorus Particles. Kinet Catal 63, 197–206 (2022). https://doi.org/10.1134/S0023158422020094

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158422020094

Keywords:

Navigation