Skip to main content
Log in

CO oxidation by oxygen of the catalyst and by gas-phase oxygen over (0.5–15)%CoO/ZrO2

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

CO adsorption on (0.5–15)%CoO/ZrО2 catalysts has been investigated by temperature-programmed desorption and IR spectroscopy. At 20°С, carbon monoxide forms carbonyl and monodentate carbonate complexes on Co 2+ m O 2- n clusters located on the surface of crystallites of tetragonal ZrO2. With an increasing CoO content of the clusters, the amount of these complexes increases and the temperature of carbonate decomposition, accompanied by CO2 desorption, decreases from 400 to 304°С. On the 5%CoO/ZrО2 sample, the carbonyls formed on the Со2+ and Со+ cations and Со0 atoms decompose at 20, 90, and 200–220°С, respectively, releasing CO. At 20°С, they are oxidized by oxygen to monodentate carbonates, which decompose at 180°С. Adsorbed oxygen decreases the temperature of their decomposition on oxidation sites by ~40°C, and the sample remains in an oxidized state ensuring the possibility of subsequent CO adsorption and oxidation. The rate of the oxidation of 5%CoO/ZrО2 containing adsorbed CO by oxygen is higher than the rate of the oxidation of the same sample reduced by carbon monoxide, because the latter reaction is an activated one. In view of the properties of the complexes, it can be concluded that the carbonates decomposing at 180°С are involved in CO oxidation by oxygen from the gas phase in the presence of hydrogen, a process occurring at 50–200°С. The rate-limiting step of this process the decomposition of the carbonates, which is characterized by an activation energy of 77–94 kJ/mol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ola, D., Geppert, A., and Prokash, S., Metanol i energetika budushchego, kogda zakonchatsya neft’ i gaz (Methanol and Energy of the Future after Oil and Gas Are Exhausted), Moscow Binom, 2009.

    Google Scholar 

  2. Mishra, A. and Prasad, R., Bull. Chem. React. Eng. Catal., 2011, vol. 6, no. 1, p. 1.

    Article  CAS  Google Scholar 

  3. Royer, S. and Duprez, D., ChemCatChem, 2011, vol. 3, p. 24.

    Article  CAS  Google Scholar 

  4. Polster, C.S., Nair, H., and Baertsch, C.D., J. Catal., 2009, vol. 266, p. 308.

    Article  CAS  Google Scholar 

  5. Kydd, R., Ferri, D., Hug, P., Scott, J., Teoh, Y., and Amal, R., J. Catal., 2011, vol. 277, p. 64.

    Article  CAS  Google Scholar 

  6. Maciel, C.G., Belgacem, M.N., and Assaf, J.M., Catal. Lett., 2011, vol. 141, p. 316.

    Article  CAS  Google Scholar 

  7. Il’ichev, A.N., Matyshak, V.A., and Korchak, V.N., Kinet. Catal., 2015, vol. 56, no. 1, p. 115.

    Article  Google Scholar 

  8. Jansson, J., J. Catal., 2000, vol. 194, p. 55.

    Article  CAS  Google Scholar 

  9. Jansson, J., Palmqvist, A.E.C., Fridell, E., Skoglundh, M., Österlund, L., Thornählend, P., and Langer, V., J. Catal., 2002, vol. 2011, p. 387.

    Article  Google Scholar 

  10. Zhao, Z., Yung, M.M., and Ozkan, U.S., Catal. Commun., 2008, vol. 9, p. 1465.

    Article  CAS  Google Scholar 

  11. Firsova, A.A., Khomenko, T.I., Sil’chenkova, O.N., and Korchak, V.N., Kinet. Catal., 2010, vol. 51, no. 2, p. 299.

    Article  CAS  Google Scholar 

  12. Il’ichev, A.N., Shashkin, D.P., Matyshak, V.A., and Korchak, V.N., Kinet. Catal., 2015, vol. 56, no. 2, p. 197.

    Article  Google Scholar 

  13. Jung, K.T. and Bell, A.T., Top. Catal., 2002, vol. 20, nos. 1–4, p. 97.

    Article  CAS  Google Scholar 

  14. Powder Diffraction File. Alphabetical Indexes. Inorganic Phases, Gaithersburg, Penn., International Center for Diffraction Data, 1983.

  15. Tret’yakov, I.I., Shub, B.R., and Sklyarov, A.V., Zh. Fiz. Khim., 1970, vol. 44, p. 2112.

    Google Scholar 

  16. Handbuch der preparativen anorganischen Chemie, von Brauer, G., Ed., Stuttgart, Ferdinand Enke, 1981.

  17. Pozdnykova, O., Teschner, D., Wootsch, A., Kröhnert, J., Steinhauer, B., Sauer, H., Tonh, L., Jentoft, F.C., Knop-Gericke, F., Paal, Z., and Schlögl, R., J. Catal., 2006, vol. 273, p. 1.

    Article  Google Scholar 

  18. Davydov, A.A., IK-spektroskopiya v khimii poverkhnosti oksidov (IR Spectroscopy Applied to Oxide Surface Chemistry), Novosibirsk Nauka, 1984.

    Google Scholar 

  19. Il’ichev, A.N., Fattakhova, Z.T., Shashkin, D.P., Matyshak, V.A., and Korchak, V.N., Kinet. Catal., 2016, vol. 57, no. 5, p. 686.

    Article  Google Scholar 

  20. Yung, M.M., Zhao, Z., Woods, M.P., and Ozkan, U.S., J. Mol. Catal. A: Chem., 2008, vol. 208, p. 1.

    Article  Google Scholar 

  21. Kislyuk, M.U. and Rozanov, V.V., Kinet. Katal., 1995, vol. 36, no. 1, p. 89.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Il’ichev.

Additional information

Original Russian Text © A.N. Il’ichev, Z.T. Fattakhova, D.P. Shashkin, V.A. Matyshak, V.N. Korchak, 2017, published in Kinetika i Kataliz, 2017, Vol. 58, No. 3, pp. 315–326.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Il’ichev, A.N., Fattakhova, Z.T., Shashkin, D.P. et al. CO oxidation by oxygen of the catalyst and by gas-phase oxygen over (0.5–15)%CoO/ZrO2 . Kinet Catal 58, 300–310 (2017). https://doi.org/10.1134/S0023158417030089

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158417030089

Keywords

Navigation