Skip to main content
Log in

Mathematical modeling of heterogeneous catalysis involving polymer-supported catalysts

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

This study reports the mathematical modeling of catalytic reaction systems involving polymer-supported catalysts. Differential mass balances were applied to species and the partial differential equations were solved through the method of lines in MATLAB®. Etherification and esterification reactions were studied with the present model and validation was performed with literature data, providing fair agreement. Furthermore, the model proved capable of predicting concentration gradients along the catalyst particles, providing an interesting level of detail to represent catalytic heterogeneous systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pérez, M.A., Bringué, R., Iborra, M., Tejero, J., and Cunill, F., Appl. Catal., A, 2014, vol. 482, p. 38.

    Article  Google Scholar 

  2. Pecci, G.C., Clerici, M.G., Giavazzi, F., Ancillotti, F., Marchionna, M., and Patrini, R., IX Int. Symp. on Alcohol Fuels, Florence, Italy, 1991, p. 327.

    Google Scholar 

  3. Bringué, R., Iborra, M., Tejerpo, J., Izquierdo, J.F., Cunill, F., Fité, C., and Cruz, V.J., J. Catal., 2006, vol. 244, p. 33.

    Article  Google Scholar 

  4. Pereira, C.S.M., Pinho, S.P., Silva, V.M.T.M., and Rodrigues, A.E., Ind. Eng. Chem. Res., 2008, vol. 47, p. 1453.

    Article  CAS  Google Scholar 

  5. Fogler, H.S., Elementos de Engenharia das Reacoes Quimicas, Rio de Janeiro: LTC, 2009.

    Google Scholar 

  6. Gupta, K.C., Kumar Sutar, A., and Lin, C.-C., Coord. Chem. Rev., 2009, vol. 253, p. 1926.

    Article  CAS  Google Scholar 

  7. Coutinho, F.M.B., Rezende, S.M., and Soares, B.G., J. Appl. Polym. Sci., 2006, vol. 102, p. 3616.

    Article  CAS  Google Scholar 

  8. Bringué, R., Ramírez, E., Fité, C., Iborra, M., and Tejero, J., Ind. Eng. Chem. Res., 2011, vol. 50, p. 7911.

    Article  Google Scholar 

  9. Aiouache, F. and Goto, S., Chem. Eng. Sci., 2003, vol. 58, p. 2065.

    Article  CAS  Google Scholar 

  10. An, W., Chuang, K.T., and Sanger, A.R., Can. J. Chem. Eng., 2004, vol. 82, p. 948.

    Article  CAS  Google Scholar 

  11. Bringué, R., Ramírez, E., Iborra, M., Tejero, J., and Cunill, F., Chem. Eng. J., 2014, vol. 246, p. 71.

    Article  Google Scholar 

  12. Hosseininejad, S., Afacan, A., and Hayes, R.E., Chem. Eng. Res. Des., 2012, vol. 90, p. 825.

    Article  CAS  Google Scholar 

  13. Ali, S.H., Int. J. Chem. Kinet., 2009, vol. 41, p. 432.

    Article  CAS  Google Scholar 

  14. Lee, M., Chiu, J., and Lin, H., Ind. Eng. Chem. Res., 2002, vol. 41, p. 2882.

    Article  CAS  Google Scholar 

  15. Liu, W. and Tan, C., Ind. Eng. Chem. Res., 2001, vol. 40, p. 3281.

    Article  CAS  Google Scholar 

  16. Mazzotti, M., Neri, B., Gelosa, D., Kruglov, A., and Morbidelli, M., Ind. Eng. Res., 1997, vol. 36, p. 3.

    Article  CAS  Google Scholar 

  17. Yang, B.-H., Maeda, M., and Goto, S., Int. J. Chem. Kinet., 1998, vol. 30, no. 2, p. 137.

    Article  CAS  Google Scholar 

  18. Davidson, T.J., Okoli, C., Wilson, K., Lee, A.F., Harvey, A., Woodford, J., and Sadhukhan, J., RSC Adv., 2013, vol. 3, p. 6226.

    Article  Google Scholar 

  19. Lopez, D.E., Goodwin, J.G., Bruce, D.A., and Loreto, E., Appl. Catal., A, 2005, vol. 295, p. 97.

    Article  CAS  Google Scholar 

  20. Van de Steene, E., de Clercq, J., and Thubaut, J.W., Chem. Eng. J., 2014, vol. 242, p. 170.

    Article  Google Scholar 

  21. Lilia, J., Aumo, J., Salmi, T., Murzin, D.Y., Mäki-Arvela, P., Sundell, M., Ekman, K., Peltonen, R., and Vainio, H., Appl. Catal., A, 2002, vol. 228, p. 253.

    Article  Google Scholar 

  22. Lilja, J., Warna, J., Salmi, T., Pettersson, L.J., Ahlkvist, J., Grenman, H., Ronnholm, M., and Murzin, D.Y., Chem. Eng. J., 2005, vol. 115, p. 1.

    Article  CAS  Google Scholar 

  23. Meena, V., Praveen, T., and Rajendran, L., Kinet. Catal., 2016, vol. 57, no. 1, p. 125.

    Article  CAS  Google Scholar 

  24. Pääkkönen, P.K. and Krause, A.O.I., Appl. Catal., A, 2003, vol. 245, p. 289.

    Article  Google Scholar 

  25. Silva, V.M.T.M. and Rodrigues, A.E., Chem. Eng. Sci., 2006, vol. 61, p. 216.

    Google Scholar 

  26. Bird, R.B., Stewart, W.E., and Lightfoot, E.N., Fenomenos de Transporte, Rio de Janeiro: LTC, 2004.

    Google Scholar 

  27. Du Toit, E. and Nicol, W., Appl. Catal., A, 2004, vol. 277, p. 219.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. G. Aguiar.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, H.A., Aguiar, L.G. Mathematical modeling of heterogeneous catalysis involving polymer-supported catalysts. Kinet Catal 58, 211–217 (2017). https://doi.org/10.1134/S0023158417020112

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158417020112

Keywords

Navigation