Skip to main content
Log in

Thermal deactivation mechanism and the effect of Nd addition on the deactivation of the Pt/SiO2 catalyst for NO oxidation reaction

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

Pt-based catalysts cannot be used permanently for the diesel after-treatment system because the catalytic activity is decreased due to coarsening of Pt particles at high temperature of the exhaust gas. In this study, to prevent Pt-based catalyst from deactivation, Nd was added to the Pt/SiO2 catalyst, and the effect of the Nd addition on the catalytic activity was investigated. The Pt/SiO2 catalyst showed a high catalytic activity for the oxidation of NO but was severely deactivated after the fast thermal aging process. Pt crystallite size was increased and some Pt particles were buried in the SiO2 pore during the fast thermal aging process, which led to the decrease of catalytic activity. Nd-added Pt/SiO2 catalyst showed lower activity than Pt/SiO2 catalyst, but Pt–Nd/SiO2 catalyst maintained its catalytic activity after fast thermal aging process. It can be postulated that a stable Nd silicate, on which Pt particle is placed, protects SiO2 pores from destruction and so the number of the catalytically active sites remains nearly unchanged. As a result the Pt–Nd/SiO2 catalyst maintained its catalytic activity after fast thermal aging process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Landong, L., Lingling, Q., Jie, C., Jinjun, L., and Zhengping, H., Appl. Catal., B, 2009, vol. 88, p. 224.

    Article  Google Scholar 

  2. Mergler, Y.J., Aalst, A., Delt, J., and Nieuwenhuys, B.E., J. Catal., 1996, vol. 161, p. 310.

    Article  CAS  Google Scholar 

  3. Ronald, M.H. and Robert, J.F., Appl. Catal., A, 2001, vol. 221, p. 443.

    Article  Google Scholar 

  4. Byung, C.C. and David, E.F., J. Mech. Sci. Technol., 2006, vol. 20, p. 1.

    Article  Google Scholar 

  5. Jong, W.J., Byung, C.C., and Myung, T.L., J. Ind. Eng. Chem., 2008, vol. 14, p. 830.

    Article  Google Scholar 

  6. Stanmore, B.R., Tschamber, V., and Brilhac, J.F., Fuel, 2008, vol. 87, p. 131.

    Article  CAS  Google Scholar 

  7. Barry, A.A.L.S., Michiel, M., and Jacob, A.M., Catal. Rev., 2007, vol. 43, p. 489.

    Google Scholar 

  8. Junko, O., Akira, O., Shudong, W., Tetsuya, N., and Akihiko, O., Appl. Catal., B, 2003, vol. 43, p. 117.

    Article  Google Scholar 

  9. Byung, C.C. and David, E.F., J. Ind. Eng. Chem., 2005, vol. 11, p. 1.

    Google Scholar 

  10. Byungchul, C., J. Ind. Eng. Chem., 2008, vol. 14, p. 499.

    Article  Google Scholar 

  11. Qiang, W., So, Y.P., Linhai, D., and Jong, S.C., Appl. Catal., B, 2008, vol. 85, p. 10.

    Article  Google Scholar 

  12. Zhiming, L. and Seong, I.W., Catal. Rev., 2006, vol. 48, p. 43.

    Article  Google Scholar 

  13. Rui, M., Pierre, D., Patrick, D.C., Henry, M., Jean, T., and Gerald, D., J. Mol. Catal. A: Chem., 2004, vol. 221, p. 127.

    Article  Google Scholar 

  14. Xue, E., Seshan, K., and Ommen, J.G., Appl. Catal., B, 1993, vol. 2, p. 183.

    Article  CAS  Google Scholar 

  15. Xue, E., Seshan, K., and Ross, J.R.H., Appl. Catal., B, 1996, vol. 11, p. 65.

    Article  CAS  Google Scholar 

  16. Song, T.O., Sang, M.K., Man, S.Y., Hyo, K.L., Gwon, K.Y., and Ho, I.L., React. Kinet. Catal. Lett., 2007, vol. 90, p. 339.

    Article  Google Scholar 

  17. Michele, P., Marc, D., and Michel, S., Solid State Ionics, 1992, vol. 50, p. 31.

    Article  Google Scholar 

  18. Calvin, H.B. and Wayne, L.S., J. Catal., 1983, vol. 81, p. 131.

    Article  Google Scholar 

  19. Ozawa, Y., Tochihara, Y., Watanabe, A., Nagai, M., and Omi, S., Appl. Catal., A, 2004, vol. 258, p. 261.

    Article  CAS  Google Scholar 

  20. Wang, F. and Lu, G., J. Power Sources, 2008, vol. 181, p. 120.

    Article  CAS  Google Scholar 

  21. Leszek, K., Marek, W., and Marek, D., Mater. Chem. Phys., 2006, vol. 96, p. 353.

    Article  Google Scholar 

  22. Duhan, S. and Aghamkar, P., Chin. Phys. Lett., 2009, vol. 26, p. 016106.

    Article  Google Scholar 

  23. Tung, P. and Te, Y., Semicond. Sci. Technol., 2009, vol. 24, p. 095.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y.-K. Chung.

Additional information

Published in Russian in Kinetika i Kataliz, 2017, Vol. 58, No. 2, pp. 176–182.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, YK., Lee, HI. Thermal deactivation mechanism and the effect of Nd addition on the deactivation of the Pt/SiO2 catalyst for NO oxidation reaction. Kinet Catal 58, 161–166 (2017). https://doi.org/10.1134/S0023158417020045

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158417020045

Keywords

Navigation