Skip to main content
Log in

Enhanced catalytic performance of Co–Sn composite oxide in styrene epoxidation with air

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

A simple calcination process was used to obtain Co–Sn composite oxides, the structure of which was confirmed by the XRD analysis. For comparison, the pure cobalt oxide was also prepared under the same calcination condition. According to TEM measurements, the composite oxide prepared in the presence of Sn had lower particle size than pure cobalt oxide. Accordingly, the presence of Sn increased the specific surface area as evidenced by the BET analysis data. The as-prepared Co–Sn composite oxides were applied as heterogeneous catalysts in the epoxidation of styrene with air and exhibited catalytic activity with 77.9 mol % of styrene converted and 87.1% selectivity for epoxide. These results exceed those obtained for pure cobalt oxide. However, the addition of ions of other metals such as Fe, Ni, Cu, Zn and Mn to the catalyst had a detrimental effect on the styrene epoxidation. The mechanistic considerations are also presented and suggestion is given that the DMF solvent plays a key role in the catalytic epoxidation. Results of the study indicate that Co–Sn composite oxides are efficient heterogeneous catalysts for the epoxidation of styrene with air in DMF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Laha, S.C. and Kumar, R., J. Catal., 2001, vol. 204, p. 64.

    Article  CAS  Google Scholar 

  2. Caldarell, M., Habermann, J., and Ley, S.V., J. Chem. Soc., Perkin Trans., 1999, vol. 1, p. 107.

    Article  Google Scholar 

  3. Grieken, R.V., Sotelo, J.L., Martos, C., Fierro, J.L.G., Granados, M.L., and Mariscal, R., Catal. Today, 2000, vol. 61, p. 49.

    Article  Google Scholar 

  4. Yang, Q., Wang, S., Lu, J., Xiong, G., Feng, Z., Xin, Q., and Li, C., Appl. Catal., A, 2000, vols. 194–195, p. 507.

    Article  Google Scholar 

  5. Yang, Q., Li, C., Wang, J.L., Ying, P., Xin, X., and Shi, W., Stud. Surf. Sci. Catal., 2000, vol. 130, p. 221.

    Article  Google Scholar 

  6. Kumar, S.B., Mirajkar, S.P., Pais, G.C.G., Kumar, P., and Kumar, R., J. Catal., 1995, vol. 156, p. 163.

    Article  CAS  Google Scholar 

  7. Zhang, W., Froba, M., Wang, J., Tanev, P., Wong, J., and Pinnavaia, T.J., J. Am. Chem. Soc., 1996, vol. 118, p. 9164.

    Article  CAS  Google Scholar 

  8. Fu, Z., Yin, D., Li, Q., Zhang, L., and Zhang, Y., Microporous Mesoporous Mater., 1999, vol. 29, p. 351.

    Article  CAS  Google Scholar 

  9. Srinivas, D., Manikandan, P., Laha, S.C., Kumar, R., and Ratnasamy, P., J. Catal., 2003, vol. 217, p. 160.

    CAS  Google Scholar 

  10. Choudhary, V.R., Patil, N.S., and Bhargava, S.K., Catal. Lett., 2003, vol. 89, p. 55.

    Article  CAS  Google Scholar 

  11. Patil, N.S., Jha, R., Uphade, B.S., Bhargava, S.K., and Choudhary, V.R., Appl. Catal., A, 2004, vol. 275, p. 87.

    Article  CAS  Google Scholar 

  12. Patil, N.S., Uphade, B.S., Jana, P., Bhargava, S.K., and Choudhary, V.R., J. Catal., 2004, vol. 223, p. 236.

    Article  CAS  Google Scholar 

  13. Rode, C.V., Nehete, U.N., and Dongare, M.K., Catal. Commun., 2003, vol. 4, p. 365.

    Article  CAS  Google Scholar 

  14. Sinha, A.K., Seelan, S., Tsubota, S., and Haruta, M., Angew. Chem., Int. Ed. Engl., 2004, vol. 43, p. 1546.

    Article  CAS  Google Scholar 

  15. Liu, Y., Murata, K., and Inaba, M., Chem. Commun., 2004, p. 582.

    Google Scholar 

  16. Rhodes, B., Rowling, S., Tidswell, P., Woodward, S., and Brown, S.M., J. Mol. Catal. A: Chem., 1997, vol. 116, p. 375.

    Article  CAS  Google Scholar 

  17. Punniyamurthy, T. and Iqbal, J., Tetrahedron Lett., 1997, vol. 38, p. 4463.

    Article  CAS  Google Scholar 

  18. Tang, Q.H., Wang, Y., Liang, J., Wang, P., Zhang, Q.H., and Wan, H.L., Chem. Commun., 2004, p. 440.

    Google Scholar 

  19. Tang, Q.H., Zhang, Q.H., Wu, H.L., and Wang, Y., J. Catal., 2005, vol. 230, p. 384.

    Article  CAS  Google Scholar 

  20. Sebastian, J., Jinka, K.M., and Jasra, R.V., J. Catal., 2006, vol. 244, p. 208.

    Article  CAS  Google Scholar 

  21. Jinka, K.M., Sebastian, J., and Jasra, R.V., J. Mol. Catal. A: Chem., 2007, vol. 274, p. 33.

    Article  CAS  Google Scholar 

  22. Patil, M.V., Yadav, M.K., and Jasra, R.V., J. Mol. Catal. A: Chem., 2007, vol. 277, p. 72.

    Article  CAS  Google Scholar 

  23. Cui, H.T., Zhang, Y., Zhao, L.F., and Zhu, Y.L., Catal. Commun., 2011, vol. 12, p. 417.

    Article  CAS  Google Scholar 

  24. Tang, B., Lu, X.H., Zhou, D., Lei, J., Niu, Z.H., Fan, J., and Xia, Q.H., Catal. Commun., 2012, vol. 21, p. 68.

    Article  CAS  Google Scholar 

  25. Quek, X.Y., Tang, Q.H., Hu, S.Q., and Yang, Y.H., Appl. Catal., A, 2009, vol. 361, p. 130.

    Article  CAS  Google Scholar 

  26. Zhan, H.J., Xia, Q.H., Lu, X.H., Zhang, Q., Yuan, H.X., Su, K.X., and Ma, X.T., Catal. Commun., 2007, vol. 8, p. 1472.

    Article  CAS  Google Scholar 

  27. Sun, C., Rajasekhara, S., Chen, Y., and Goodenough, J.B., Chem. Commun., 2011, vol. 47, p. 12852.

    Article  CAS  Google Scholar 

  28. Liu, S., Wang, Z.Y., Zhao, H.R., Fei, T., and Zhang, T., Sens. Actuators, B, 2014, vol. 197, p. 342.

    Article  CAS  Google Scholar 

  29. Khder, A.S. and Ahmed, A.I., Appl. Catal. A, 2009, vol. 354, p. 153.

    Article  CAS  Google Scholar 

  30. Chu, G.W., Zeng, Q.H., Shen, Z.G., Zou, H.K., and Chen, J.F., Chem. Eng. J., 2014, vol. 253, p. 78.

    Article  CAS  Google Scholar 

  31. Tang, C.W., Kuo, C.C., Kuo, M.C., Wang, C.B., and Chien, Sh., Appl. Catal. A, 2006, vol. 309, p. 37.

    Article  CAS  Google Scholar 

  32. Dai, S.D. and Yao, Z.L., Appl. Surf. Sci., 2012, vol. 258, p. 5703.

    Article  CAS  Google Scholar 

  33. Kim, S.C. and Park, C.Y., Res. Chem. Intermed., 2002, vol. 28, p. 441.

    Article  CAS  Google Scholar 

  34. Tangchupong, N., Khaodee, W., Jongsomjit, B., Laosiripojana, N., Praserthdam, P., and Assabumrungrat, S., Fuel Process. Technol., 2010, vol. 91, p. 121.

    Article  CAS  Google Scholar 

  35. Hoflund, G.B., Gardner, S.D., Schryer, D.R., Upchurch, B.T., and Kielin, E.J., Appl. Catal. B, 1995, vol. 6, p. 117.

    Article  CAS  Google Scholar 

  36. Kähler, K., Holz, M.C., Rohe, M., van Veen, A.C., and Muhler, M., J. Catal., 2013, vol. 299, p. 162.

    Article  Google Scholar 

  37. Li, L., Wang, A., Qiao, B., Lin, J., Huang, Y., Wang, X., and Zhang, T., J. Catal., 2013, vol. 299, p. 90.

    Article  CAS  Google Scholar 

  38. Base, D. and Seff, K., Microporous Mesoporous Mater., 1999, vol. 33, p. 265.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-tao Ma.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, HJ., Liu, M., Ma, Xt. et al. Enhanced catalytic performance of Co–Sn composite oxide in styrene epoxidation with air. Kinet Catal 56, 712–717 (2015). https://doi.org/10.1134/S0023158415060154

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158415060154

Keywords

Navigation