Skip to main content
Log in

Role of the support in the formation of the properties of a Pd/Al2O3 catalyst for the low-temperature oxidation of carbon monoxide

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The Pd/Al2O3 catalysts were prepared by the impregnation of aluminum hydroxide, which was synthesized by precipitation in the presence of polyvinyl alcohol, with a solution of palladium nitrate and were heat-treated at different temperatures. The resulting samples were characterized by X-ray diffraction, electron microscopy, diffuse reflectance spectroscopy, and X-ray photoelectron spectroscopy and were tested in CO oxidation in two modes: in a temperature-programmed reaction and under isothermal conditions at 20°C in the absence and in the presence of water vapor. The activity of the catalysts in the former mode was almost independent of support preparation conditions, but it was different in the latter mode. The catalyst whose support was obtained in the presence of polyvinyl alcohol and treated at 300°C in an atmosphere of nitrogen exhibited the highest activity in CO oxidation at 20°C. In the absence of water vapor from the reaction mixture, the initial conversion of CO reached 40% and then decreased. In the presence of water vapor, a continuous increase in the conversion of CO to 88% was observed, and the activity was stabilized at this level. The smallest size of palladium metal nanoparticles, the nearly monolayer carbon surface coverage, and the presence of OH groups, which are formed upon the dissociation of water present in the reaction mixture, facilitate an increase in activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ivanova, A.S., Slavinskaya, E.M., Stonkus, O.A., Zaikovskii, V.I., Danilova, I.G., Gulyaev, R.V., Bulavchenko, O.A., Tsybulya, S.V., and Boronin, A.I., Kinet. Catal., 2013, vol. 54, no. 1, p. 81.

    Article  CAS  Google Scholar 

  2. Martínez-Arias, A., Hungría, A.B., Fernández-García, M., Iglesias-Juez, A., Anderson, J.A., and Conesa, J.C., J. Catal., 2004, vol. 221, p. 85.

    Article  Google Scholar 

  3. Ivanova, A.S., Slavinskaya, E.M., Gulyaev, R.V., Zaikovskii, V.I., Danilova, I.G., Plyasova, L.M., Polukhina, I.A., and Boronin, A.I., Appl. Catal., B, 2010, vol. 97, nos. 1–2, p. 57.

    Article  CAS  Google Scholar 

  4. Shen, Y., Lu, G., Guo, Y., and Wang, Y., Chem. Commun., 2010, vol. 46, p. 8433.

    Article  CAS  Google Scholar 

  5. Utamapanya, S., Klabunde, K.J., and Schlup, J.P., Chem. Mater., 1991, vol. 3, no. 1, p. 175.

    Article  CAS  Google Scholar 

  6. Diao, Y., Walawender, W.P., Sorensen, Ch.M., Klabunde, K.J., and Ricker, T., Chem. Mater., 2002, vol. 14, no. 1, p. 362.

    Article  CAS  Google Scholar 

  7. Thoms, H., Epple, M., and Reller, A., Solid State Ionics, 1997, vols. 101–103, p. 79.

    Article  Google Scholar 

  8. Zou, Z.-Q., Meng, M., Guo, L.-H., and Zha, Y.-Q., J. Hazard. Mater., 2009, vol. 163, p. 835.

    Article  CAS  Google Scholar 

  9. Price, W.J., Analytical Atomic Absorption Spectroscopy, London: Heyden, 1972.

    Google Scholar 

  10. PCPDFWin, Ver. 1.30, Swarthmore, Penn.: JCPDS ICDD, 1997.

  11. Moroz, E.M., Russ. Chem. Rev., 2011, vol. 80, no. 4, p. 293.

    Article  CAS  Google Scholar 

  12. Moroz, E.M., Zyuzin, D.A., and Shefer, K.I., J. Struct. Chem., 2007, vol. 48, no. 2, p. 262.

    Article  CAS  Google Scholar 

  13. Buyanova, N.E., Karnaukhov, A.P., and Alabuzhev, Yu.A., Opredelenie udel’noi poverkhnosti dispersnykh i poristykh materialov (Determination of the Specific Surface Area of Dispersed and Porois Materials), Novosibirsk: Inst. Kataliza, 1978.

    Google Scholar 

  14. Boehm, H.-P. and Knozinger, H., in Catalysis Science and Technology, Anderson, J.R. and Boudart, M, Eds., Berlin: Springer, 1983, vol. 4, p. 39.

  15. Slavinskaya, E.M., Chesalov, Yu.A., Boronin, A.I., Polukhina, I.A., and Noskov, A.S., Kinet. Catal., 2005, vol. 46, p. 555.

    Article  CAS  Google Scholar 

  16. Titkov, A.I., Salanov, A.N., Koscheev, S.V., and Boronin, A.I., React. Kinet. Catal. Lett., 2005, vol. 86, p. 371.

    Article  CAS  Google Scholar 

  17. Knyazev, A.S., Magaev, O.V., Vodyankina, O.V., Titkov, A.I., Salanov, A.N., Koshcheev, S.V., and Boronin, A.I., Kinet. Catal., 2005, vol. 46, p. 151.

    Article  CAS  Google Scholar 

  18. Handbook of X-Ray Photoelectron Spectroscopy, Moulder, J.F., Stickle, W.F., and Sobol, P.E., Eds., Eden Prairie, Minn.: PerkinElmer, 1992.

    Google Scholar 

  19. Ivanova, A.S., Litvak, G.S., Kryukova, G.N., Tsybulya, S.V., and Paukshtis, E.A., Kinet. Catal., 2000, vol. 41, no. 1, p. 122.

    Article  CAS  Google Scholar 

  20. Ushakov, V.A., Moroz, E.M., and Levitskii, E.A., Kinet. Katal., 1985, vol. 26, p. 1200.

    CAS  Google Scholar 

  21. Korneeva, E.V., Ivanova, A.S., Zyuzin, D.A., Moroz, E.M., Stonkus, O.A., Zaikovskii, V.I., and Danilova, I.G., Kinet. Catal., 2012, vol. 53, no. 4, p. 440.

    Article  CAS  Google Scholar 

  22. Rakai, A., Tessier, D., and Bozon-Verduraz, F., New J. Chem., 1992, vol. 16, p. 869.

    CAS  Google Scholar 

  23. Lyubovski, M. and Pfefferle, L., Catal. Today, 1999, vol. 47, nos. 1–4, p. 29.

    Article  Google Scholar 

  24. Creighton, J.A. and Eadon, D.G., J. Chem. Soc., Faraday Trans., 1991, vol. 87, p. 3881.

    Article  CAS  Google Scholar 

  25. Wertheim, G.K., Z. Phys. D: At. Mol. Clusters, 1989, vol. 12, nos. 1–4, p. 319.

    Article  CAS  Google Scholar 

  26. Mason, M.G., Phys. Rev. B, 1983, vol. 27, no. 2, p. 748.

    Article  CAS  Google Scholar 

  27. Satterfield, Ch., Heterogeneous Catalysis in Practice, New York McGraw-Hill, 1980.

    Google Scholar 

  28. Cunningham, D.A.H., Kobayashi, T., Kamijo, N., and Haruta, M., Catal. Lett., 1994, vol. 25, p. 257.

    Article  CAS  Google Scholar 

  29. Calla, J.T. and Davis, R., J. Ind. Eng. Chem. Res., 2005, vol. 44, p. 5403.

    Article  CAS  Google Scholar 

  30. Costello, C.K., Yang, J.H., Law, H.Y., Wang, Y., Lin, J.N., Marks, L.D., Kung, M.C., and Kung, H.H., Appl. Catal., A, 2003, vol. 243, p. 15.

    Article  CAS  Google Scholar 

  31. Haruta, M.J., New Mater. Electrochem. Syst., 2004, vol. 7, p. 163.

    CAS  Google Scholar 

  32. Kunkalekar, R.K. and Salker, A.V., Catal. Commun., 2010, vol. 12, p. 193.

    Article  CAS  Google Scholar 

  33. Shido, T. and Iwasawa, Y., J. Catal., 1993, vol. 141, no. 1, p. 71.

    Article  CAS  Google Scholar 

  34. Zhai, Y.P., Pierre, D., Si, R., Deng, W.L., Ferrin, P., Nilekar, A.U., Peng, G.W., Herron, J.A., Bell, D.C., Saltsburg, H., Mavrikakis, M., and Flytzani-Stephanopoulos, M., Science, 2010, vol. 329, p. 1633.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Ivanova.

Additional information

Original Russian Text © A.S. Ivanova, E.V. Korneeva, E.M. Slavinskaya, D.A. Zyuzin, E.M. Moroz, I.G. Danilova, R.V. Gulyaev, A.I. Boronin, O.A. Stonkus, V.I. Zaikovskii, 2014, published in Kinetika i Kataliz, 2014, Vol. 55, No. 6, pp. 467–482.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanova, A.S., Korneeva, E.V., Slavinskaya, E.M. et al. Role of the support in the formation of the properties of a Pd/Al2O3 catalyst for the low-temperature oxidation of carbon monoxide. Kinet Catal 55, 748–762 (2014). https://doi.org/10.1134/S002315841406007X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002315841406007X

Keywords

Navigation