Skip to main content
Log in

Influence of the size and wall curvature of nanopores on the gas distribution pattern in them

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

The behavior of hydrogen molecules in carbon nanopores of different shapes (slit-shaped, cylindrical, and spherical) is investigated using the molecular dynamics method. It is shown that an adsorbed molecular layer with increased density is formed near the nanopore walls, and dynamic equilibrium is established between this layer and the gas in the central region of the nanopore. The distribution of the density of gas molecules over the cross section is found to depend on the size and wall curvature of nanopores: with a reduction in the nanopore size, the density of the adsorbate increases more rapidly in spherical nanopores, whose walls are characterized by greater mean curvature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Coasne, A. Galarneau, F. Di Renzo, and R. J. M. Pellenq, “Molecular Simulation of Adsorption and Intrusion in Nanopores,” Adsorption 14, 215–221 (2008).

    Article  Google Scholar 

  2. M. T. Miyahara, R. Numaguchi, T. Hiratsuka, et al., “Fluids in Nanospaces: Molecular Simulation Studies to Find Out Key Mechanisms for Engineering,” Adsorption 20, 213–223 (2014).

    Article  Google Scholar 

  3. L. D. Gelb, K. E. Gubbins, R. Radhakrishnan, and M. Sliwinska-Bartkowiak, “Phase Separation in Confined Systems,” Rep. Progr. Phys. 62, 1573–1659 (1999).

    Article  ADS  Google Scholar 

  4. M. Thommes and K. A. Cychosz, “Physical Adsorption Characterization of Nanoporous Materials: Progress and Challenges,” Adsorption 20, 233–250 (2014).

    Article  Google Scholar 

  5. K. Morishige, “Hysteresis Critical Point of Nitrogen in Porous Glass: Occurrence of Sample Spanning Transition in Capillary Condensation,” Langmuir 25, 6221–6226 (2009).

    Article  Google Scholar 

  6. T. Horikawa, D. D. Do, and D. Nicholson, “Capillary Condensation of Adsorbates in Porous Materials,” Adv. Colloid. Interface Sci. 169, 40–58 (2011).

    Article  Google Scholar 

  7. A. V. Korchuganov, K. P. Zolnikov, D. S. Kryzhevich, et al., “Computer-Aided Simulation of Gas Adsorption Processes in Nanopores,” AIP Conf. Proc. 1623, 299–302 (2014).

    Article  Google Scholar 

  8. A. A. Bochkarev and V. I. Polyakova, “Stimulated Adsorption and Capillary Condensation,” Prikl. Mekh. Tekh. Fiz. 52 (1), 132–142 (2011) [J. Appl. Mech. Tech. Phys. 52 (1), 107–115 (2011)].

    Google Scholar 

  9. A. A. Bochkarev and V. I. Polyakova, “Sorption Hysteresis on Microrough Surfaces,” Prikl. Mekh. Tekh. Fiz. 53 (2), 61–71 (2012) [J. Appl. Mech. Tech. Phys. 53 (2), 198–206 (2012)].

    Google Scholar 

  10. F. Rouquerol, J. Rouquerol, and K. Sing, Adsorption by Powders and Porous Solids (Academic Press, Lenngrad, 1999).

    Google Scholar 

  11. S. Lowell, J. E. Shields, M. A. Thomas, and M. Thommes, Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density (Springer, Dordrecht, 2004).

    Book  Google Scholar 

  12. V. S. Komarov, Scientific Basis for the Synthesis of Adsorbents (Belarus. Navuka, Minsk, 2013) [in Russian].

    Google Scholar 

  13. S. C. Wang, L. Sebentu, and C. Woo, “Superlattice of Parahydrogen Physisorbed on Graphite Surface,” J. Low Temperature Phys. 41, 611–628 (1980).

    Article  ADS  Google Scholar 

  14. S. J. Stuart, A. B. Tutein, and J. A. Harrison, “A Reactive Potential for Hydrocarbons with Intermolecular Interactions,” J. Chem. Phys. 112, 6472–6486 (2000).

    Article  ADS  Google Scholar 

  15. S. Plimpton, “Fast Parallel Algorithms for Short-Range Molecular Dynamics,” J. Comput. Phys. 117, 1–19 (1995).

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Psakh’e.

Additional information

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 58, No. 1, pp. 37–41, January–February, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Psakh’e, S.G., Zol’nikov, K.P., Korchuganov, A.V. et al. Influence of the size and wall curvature of nanopores on the gas distribution pattern in them. J Appl Mech Tech Phy 58, 31–35 (2017). https://doi.org/10.1134/S0021894417010035

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894417010035

Keywords

Navigation