Skip to main content
Log in

Towards an Effective Theory of Skyrmion Crystals

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

We consider multiskyrmion configurations in 2D ferromagnets with Dzyaloshinskii-Moriya interaction and the magnetic field, using the stereographic projection method. In the absence of Dzyaloshinskii-Moriya interaction, D, and the field, B, the skyrmions do not interact and the exact multiskyrmion solution is a sum of individual projections. In certain range of B, D ≠ 0, skyrmions become stable and form a hexagonal lattice. The shape of one skyrmion on the plane is fully determined by D and B. We describe multiskyrmion configurations by simple sums of individual skyrmion projections, of the same shape and adjusted scale. This procedure reveals pairwise and triple interactions between skyrmions, and the energy of proposed hexagonal structure is found in a good agreement with previous studies. It allows an effective theory of skyrmion structures in terms of variables, referring to individual skyrmions, i.e., their position, size and phase, elliptic distortions, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Nagaosa and Y. Tokura, Nat. Nanotech. 8, 899 (2013).

    Article  ADS  Google Scholar 

  2. M. Garst, J. Waizner, and D. Grundler, J. Phys. D: Appl. Phys. 50, 293002 (2017).

    Article  Google Scholar 

  3. N. Bogdanov and D. A. Yablonskii, Sov. Phys. JETP 68, 101 (1989).

    Google Scholar 

  4. N. Bogdanov and A. Hubert, J. Magn. Magn. Mater. 138, 255 (1994).

    Article  ADS  Google Scholar 

  5. U. K. Roßler, N. Bogdanov, and C. Pfleiderer, Nature (London, U.K.) 442, 797 (2006).

    Article  ADS  Google Scholar 

  6. B. Binz, A. Vishwanath, and V. Aji, Phys. Rev. Lett. 96, 207202 (2006).

    Article  ADS  Google Scholar 

  7. T. Okubo, S. Chung, and H. Kawamura, Phys. Rev. Lett. 108, 017206 (2012).

    Article  ADS  Google Scholar 

  8. S. Heinze, K. von Bergmann, M. Menzel, J. Brede, A. Kubetzka, R. Wiesendanger, G. Bihlmayer, and S. Brügel, Nat. Phys. 7, 713 (2011).

    Article  Google Scholar 

  9. S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, and P. Boni, Science (Washington, DC, U. S.) 323, 915 (2009).

    Article  Google Scholar 

  10. X. Z. Yu, Y. Onose, N. Kanazawa, J. H. Park, J. H. Han, Y. Matsui, N. Nagaosa, and Y. Tokura, Nature (London, U.K.) 465, 901 (2010).

    Article  ADS  Google Scholar 

  11. C. Pfleiderer, Nat. Phys. 7, 673 (2011).

    Article  Google Scholar 

  12. P. Bak and M. H. Jensen, J. Phys. C: Solid State Phys. 13, L881 (1980).

    Article  ADS  Google Scholar 

  13. O. Nakanishi, A. Yanase, A. Hasegawa, and M. Kataoka, Solid State Commun. 35, 995 (1980).

    Article  ADS  Google Scholar 

  14. A. A. Belavin and A. M. Polyakov, JETP Lett. 22, 245 (1975).

    ADS  Google Scholar 

  15. A. O. Sorokin, J. Exp. Theor. Phys. 118, 417 (2014).

    Article  ADS  Google Scholar 

  16. J. Garaud, K. A. H. Sellin, J. Jäykkä, and E. Babaev, Phys. Rev. B 89, 104508 (2014).

    Article  ADS  Google Scholar 

  17. D. F. Agterberg, E. Babaev, and J. Garaud, Phys. Rev. B 90, 064509 (2014).

    Article  ADS  Google Scholar 

  18. M. S. Scheurer and J. Schmalian, Nat. Commun. 6, 6005 (2015).

    Article  ADS  Google Scholar 

  19. D. N. Aristov and A. Luther, Phys. Rev. B 65, 165412 (2002).

    Article  ADS  Google Scholar 

  20. A. B. Borisov, J. Kishine, I. G. Bostrem, and A. S. Ovchinnikov, Phys. Rev. B 79, 134436 (2009).

    Article  ADS  Google Scholar 

  21. V. V. Kiselev and A. A. Raskovalov, Theor. Math. Phys. 173, 1565 (2012).

    Article  Google Scholar 

  22. Y. Togawa, T. Koyama, K. Takayanagi, S. Mori, Y. Kousaka, J. Akimitsu, S. Nishihara, K. Inoue, A. S. Ovchinnikov, and J. Kishine, Phys. Rev. Lett. 108, 107202 (2012).

    Article  ADS  Google Scholar 

  23. A. O. Leonov, T. L. Monchesky, N. Romming, A. Kubetzka, A. N. Bogdanov, and R. Wiesendanger, New. J. Phys. 18, 065003 (2016).

    Article  ADS  Google Scholar 

  24. V. P. Kravchuk, D. D. Sheka, U. K. Roßler, J. van den Brink, and Yu. Gaididei, Phys. Rev. B 97, 064403 (2018).

    Article  ADS  Google Scholar 

  25. D. N. Aristov, S. S. Kravchenko, and A. O. Sorokin, JETP Lett. 102, 455 (2015).

    Article  ADS  Google Scholar 

  26. N. Bogdanov and A. Hubert, Phys. Status Solidi B 186, 527 (1994).

    Article  ADS  Google Scholar 

  27. D. D. Sheka, B. A. Ivanov, and F. G. Mertens, Phys. Rev. B 64, 024432 (2001).

    Article  ADS  Google Scholar 

  28. K. L. Metlov, Phys. Rev. B 88, 014427 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. N. Aristov.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Timofeev, V.E., Sorokin, A.O. & Aristov, D.N. Towards an Effective Theory of Skyrmion Crystals. Jetp Lett. 109, 207–212 (2019). https://doi.org/10.1134/S0021364019030056

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364019030056

Navigation