Skip to main content
Log in

Chemical Binding of Carbon Dioxide on Zinc Oxide Powders Prepared by Mechanical Milling

  • Published:
Inorganic Materials Aims and scope

Abstract

Based on X-ray photoelectron spectroscopy and X-ray diffraction data for zinc oxide powders prepared via mechanical milling in an attritor, we have identified inherent features of the chemical binding of carbon dioxide on the surface of the powders. The results thus obtained can be used in the fabrication of carbon dioxide sensors, catalysts, and photocatalysts with improved performance parameters. The powders milled for 3 h exhibit the most active interaction with atmospheric carbon dioxide and have the largest percentage of carbon chemisorbed in carbonate-like form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Kanaparthi, S. and Singh, S.G., Chemiresistive sensor based on zinc oxide nanoflakes for CO2 detection, Appl. Nano Mater., 2019, vol. 2, no. 2, pp. 700–706. https://doi.org/10.1021/acsanm.8b01763

    Article  CAS  Google Scholar 

  2. Álvarez-Ramos, M.E., Necochea-Chamorro, J.I., Carrillo-Torres, R.C., and Sánchez-Zeferino, R., Room temperature CO2 sensing using Au-decorated ZnO nanorods deposited on an optical fiber, Mater. Sci. Eng., 2020, vol. 262, paper 114720. https://doi.org/10.1016/j.mseb.2020.114720

  3. Averin, I.A., Igoshina, S.E., Moshnikov, V.A., Karmanov, A.A., Pronin, I.A., and Terukov, E.I., Sensitive elements of vacuum sensors based on porous nanostructured SiO2–SnO2 sol–gel films, Tech. Phys., 2015, vol. 60, no. 6, pp. 928–932. https://doi.org/10.1134/S106378421506002X

    Article  CAS  Google Scholar 

  4. Averin, I.A., Karmanov, A.A., Moshnikov, V.A., Pronin, I.A., Igoshina, S.E., Sigaev, A.P., and Terukov, E.I., Correlations in infrared spectra of nanostructures based on mixed oxides, Phys. Solid State, 2015, vol. 57, no. 12, pp. 2373–2381. https://doi.org/10.1134/S1063783415120069

    Article  CAS  Google Scholar 

  5. Wang, Y., Kattel, S., Gao, W., Li, K., Liu, P., Chen, J.G., and Wang, H., Exploring the ternary interactions in Cu–ZnO–ZrO2 catalysts for efficient CO2 hydrogenation to methanol, Nat. Commun., 2019, vol. 10, no. 1, pp. 1–10. https://doi.org/10.1038/s41467-019-09072-6

    Article  CAS  Google Scholar 

  6. Nie, X., Ren, X., Tu, C., Song, C., Guo, X., and Chen, J.G., Computational and experimental identification of strong synergy of the Fe/ZnO catalyst in promoting acetic acid synthesis from CH4 and CO2, Chem. Commun., 2020, vol. 56, no. 28, pp. 3983–3986. https://doi.org/10.1039/C9CC10055E

    Article  CAS  Google Scholar 

  7. Tang, Q.L. and Luo, Q.H., Adsorption of CO2 at ZnO: a surface structure effect from DFT+ U calculations, J. Phys. Chem. C, 2013, vol 117, no. 44, pp. 22954–22966. https://doi.org/10.1021/jp407970a

    Article  CAS  Google Scholar 

  8. Brinzari, V., Cho, B.K., and Korotcenkov, G., Carbon 1s photoemission line analysis of C-based adsorbate on (111) In2O3 surface: the influence of reducing and oxidizing conditions, Appl. Surf. Sci., 2016, vol. 390, pp. 897–902. https://doi.org/10.1016/j.apsusc.2016.08.142

    Article  CAS  Google Scholar 

  9. Wang, Y., Kovacik, R., Meyer, B., Kotsis, K., Stodt, D., Staemmler, V., Qiu, H., Traeger, F., Langenberg, D., Muhler, M., and Woll, C., CO2 activation by ZnO through the formation of an unusual tridentate surface carbonate, Angew. Chem., Int. Ed., 2007, vol. 46, no. 29, pp. 5624–5627. https://doi.org/10.1002/anie.200700564

    Article  CAS  Google Scholar 

  10. Xin, C., Hu, M., Wang, K., and Wang, X., Significant enhancement of photocatalytic reduction of CO2 with H2O over ZnO by the formation of basic zinc carbonate, Langmuir, 2017, vol. 33, no. 27, pp. 6667–6676. https://doi.org/10.1021/acs.langmuir.7b00620

    Article  CAS  PubMed  Google Scholar 

  11. Arena, F., Italiano, G., Barbera, K., Bordiga, S., Bonura, G., Spadaro, L., and Frusteri, F., Solid-state interactions, adsorption sites and functionality of Cu–ZnO/ZrO2 catalysts in the CO2 hydrogenation to CH3OH, Appl. Catal., A, 2008, vol. 350, no. 1, pp. 16–23. https://doi.org/10.1016/j.apcata.2008.07.028

  12. Pronin, I.A., Yakushova, N.D., Sychev, M.M., Komolov, A.S., Myakin, S.V., Karmanov, A.A., Averin, I.A., and Moshnikov, V.A., Evolution of acid–base properties of the surface of zinc oxide powders obtained by the method of grinding in an attritor, Glass Phys. Chem., 2018, vol. 44, no. 5, pp. 464–473. https://doi.org/10.1134/S1087659618050140

    Article  CAS  Google Scholar 

  13. Sychov, M.M., Zakharova, N.V., and Mjakin, S.V., Effect of milling on the surface functionality of BaTiO3–CaSnO3 ceramics, Ceram. Int., 2013, vol. 39, no. 6, pp. 6821–6826. https://doi.org/10.1016/j.ceramint.2013.02.013

    Article  CAS  Google Scholar 

  14. Mandal, B., Biswas, A., Aaryashree, Sharma, D.S., Bhardwaj, R., Das, M., Rahman, Md A., Kuriakose, S., Bhaskaran, M., Sriram, S., Htay, M.Th., Das, A.K., and Mukherjee, S., π-Conjugated amine–ZnO nanohybrids for the selective detection of CO2 gas at room temperature, ACS Appl. Nano Mater., 2018, vol. 1, no. 12, pp. 6912–6921. https://doi.org/10.1021/acsanm.8b01731

    Article  CAS  Google Scholar 

  15. Averin, I.A., Pronin, I.A., Yakushova, N.D., Karmanov, A.A., Sychev, M.M., Vikhman, S.V., Levitskii, V.S., Moshnikov, V.A., and Terukov, E.I., Analysis of the structural evolution of zinc oxide powders obtained by mechanical high-energy grinding, Tech. Phys., 2019, vol. 64, no. 9, pp. 1330–1335. https://doi.org/10.1134/S1063784219090020

    Article  CAS  Google Scholar 

  16. Shirley, D.A., High-resolution X-ray photoemission spectrum of the valence bands of gold, Phys. Rev. B: Condens. Matter Mater. Phys., 1972, vol. 5, no. 12, pp. 4709–4714. https://doi.org/10.1103/PhysRevB.5.4709

    Article  Google Scholar 

  17. Ferrah, D., Haines, A.R., Galhenage, R.P., Bruce, J.P., Babore, A.D., Hunt, A., Waluyo, I., and Hemminger, J.C., Wet chemical growth and thermocatalytic activity of Cu-based nanoparticles supported on TiO2 nanoparticles/HOPG: in situ ambient pressure XPS study of the CO2 hydrogenation reaction, ACS Catal., 2019, vol. 9, no. 8, pp. 6783–6802. https://doi.org/10.1021/acscatal.9b01419

    Article  CAS  Google Scholar 

  18. Au, C.T., Hirsch, W., and Hirschwald, W., Adsorption of carbon monoxide and carbon dioxide on annealed and defect zinc oxide (0001) surfaces studied by photoelectron spectroscopy (XPS and UPSs), Surf. Sci., 1988, vol. 197, no. 3, pp. 391–401. https://doi.org/10.1016/0039-6028(88)90635-8

    Article  CAS  Google Scholar 

  19. Komolov, A.S., Lazneva, E.F., Gerasimova, N.B., Panina, Yu.A., Baramygin, A.V., Zashikhin, G.D., and Pshenichnyuk, S.A., Structure of vacant electronic states of an oxidized germanium surface upon deposition of perylene tetracarboxylic dianhydride films, Phys. Solid State, 2016, vol. 58, no. 2, pp. 377–381. https://doi.org/10.1134/S106378341602013X

    Article  CAS  Google Scholar 

  20. Komolov, A.S., Zhukov, Yu.M., Lazneva, E.F., Aleshin, A.N., Pshenichnyuk, S.A., Gerasimova, N.B., Panina, Yu.A., Zashikhin, G.D., and Baramygin, A.V., Thermally induced modification of the graphene oxide film on the tantalum surface, Mater. Des., 2017, vol. 113, pp. 319–325. https://doi.org/10.1016/j.matdes.2016.10.023

    Article  CAS  Google Scholar 

  21. http://srdata.nist.gov/xps.

  22. Sychev, M.M., Minakova, T.S., Slizhov, Yu.G., and Shilova, O.A., Kislotno-osnovnye kharakteristiki poverkhnosti tverdykh tel i upravlenie svoistvami materialov i kompozitov (Acid–Base Properties of the Surface of Solids and Control over the Properties of Materials and Composites), St. Petersburg: Khimizdat, 2016, p. 276.

Download references

ACKNOWLEDGMENTS

In this study, we used equipment at the Resource Centre for Physical Surface Characterization Methods, Research Park, St. Petersburg State University.

Funding

This work was supported by the Russian Federation President’s Grant and Scholarship Council, nos. MD-172.2021.4, MK-3541.2021.12, and SP-3720.2021.1.

The analytical work was supported by the Russian Foundation for Basic Research, grant no. 20-03-00026.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Pronin.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pronin, I.A., Yakushova, N.D., Averin, I.A. et al. Chemical Binding of Carbon Dioxide on Zinc Oxide Powders Prepared by Mechanical Milling. Inorg Mater 57, 1140–1144 (2021). https://doi.org/10.1134/S0020168521110108

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168521110108

Keywords:

Navigation