Skip to main content
Log in

Concentration and state of light elements in titanium carbide nanopowders

  • Published:
Inorganic Materials Aims and scope

Abstract

We have studied the effect of process parameters (temperature) in the reduction of titanium oxide with calcium hydride and calcium carbide on the concentrations and state of light elements (H, O, N, C, and S) in the reaction product and identified the oxygen-containing phases present in the titanium carbide (TiC) nanopowders obtained by reducing TiO2 with calcium hydride and calcium carbide. The oxygen present in the powders can be divided qualitatively and quantitatively into oxygen in adsorbed water, oxygen in organic compounds on the surface, and oxygen in the oxide layer on the surface of the carbide nanoparticle. We have performed fractional gas analysis for carbon in the titanium carbide nanopowders and assessed the effect of synthesis temperature on the average particle size and oxygen content of the nanopowders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kiparisov, S.S., Levinskii, Yu.V., and Petrov, A.P., Karbid titana: poluchenie, svoistva, primenenie (Titanium Carbide: Preparation, Properties, and Applications), Moscow: Metallurgiya, 1987.

    Google Scholar 

  2. Gotoh, Y., Kensaku, F., Koike, M., Ohkoshi, Y., Nagura, M., Akamatsu, K., and Deki, S., Synthesis of titanium carbide from a composite of TiO2 nanoparticles/methyl cellulose by carbothermal reduction, Mater. Res. Bull., 2001, vol. 36, pp. 2263–2275.

    Article  CAS  Google Scholar 

  3. Borovinskaya, I.P., Ignat’eva, T.I., Emel’yanova, O.M., Vershinnikov, V.I., and Semenova, V.N., Self-propagating high-temperature synthesis of ultrafine and nanometer-sized TiC particles, Inorg. Mater., 2007, vol. 43, no. 11, pp. 1206–1214.

    Article  CAS  Google Scholar 

  4. Samboruk, A.A., Kuznets, E.I., Makarenko, A.G., and Samboruk, A.R., Preparation of titanium carbide from a granulated starting mixture by self-propagating high-temperature synthesis, Vestn. Samarsk. Gos. Tekh. Univ. Ser.: Tekh. Nauki, 2008, no. 1 (21), pp. 124–129.

    Google Scholar 

  5. Onishchenko, D.V. and Reva, V.P., Mechanochemical synthesis of titanium carbide using carbons of various origins, Inorg. Mater., 2013, vol. 49, no. 2, pp. 136–144.

    Article  CAS  Google Scholar 

  6. Dorofeev, G.A., Ladjanov, V.I., Lubnin, A.N., Gilmutdinov, F.Z., Kuzminykh, E.V., and Ivanov, S.M., Initial stage of mechanochemical synthesis in the Ti-C exothermic system, Bull. Russ. Acad. Sci.: Phys., 2011, vol. 75, no. 11, pp. 1427–1434.

    Article  CAS  Google Scholar 

  7. Kasimtsev, A.V. and Zhigunov, V.V., The mechanism and kinetics of producing single-crystal powders of titanium carbide via a hydride-calcium method, Russ. J. Non-Ferrous Met., 2008, no. 6, pp. 471–477.

    Google Scholar 

  8. Kasimtsev, A.V., Zhigunov, V.V., and Tabachkova, N.Yu., Composition, structure, and properties of titanium carbide powder prepared via a hydride-calcium route, Izv. Vyssh. Uchebn. Zaved. Poroshk. Metall. Funkts. Pokrytiya, 2008, no. 4, pp. 15–18.

    Google Scholar 

  9. Alymov, M.I., Shustov, V.I., Kasimtsev, A.V., Zhigunov, V.V., Ankudinov, A.B., and Zelenskii, V.A., Synthesis of titanium carbide nanopowders and production of porous materials on their basis, Nanotechnol. Russ., 2011, vol. 6, nos. 1–2, pp. 130–136.

    Article  Google Scholar 

  10. Diagrammy sostoyaniya dvoinykh metallicheskikh sistem: Spravochnik (Phase Diagrams of Binary Metallic Systems: A Handbook), Lyakishev, N.P., Ed., Moscow: Mashinostroenie, 1996, vol. 1.

    Google Scholar 

  11. Venediktova, I.P., Shibaev, S.S., Shibaeva, T.V., and Grigorovich, K.V., A technique for fractional analysis of fine copper powders for oxygen, Perspekt. Mater., 2010, no. 9, pp. 48–51.

    Google Scholar 

  12. Shibaev, S.S., Shibaeva, T.V., Venediktova, I.P., and Grigorovich, K.V., Identification of oxygen species in nanopowders by gas analysis, Perspekt. Mater., 2010, no. 9, pp. 295–300.

    Google Scholar 

  13. Krasovskii, P.V., Blagoveshchenskii, Yu.V., and Grigorovich, K.V., Determination of oxygen in W-C-Co nanopowders, Inorg. Mater., 2008, vol. 44, no. 9, pp. 954–960.

    Article  CAS  Google Scholar 

  14. Bellucci, A., Gozzi, D., and Latini, A., Overview of the TiC/TiO2 (rutile) interface, Solid State Ionics, 2004, vol. 172, pp. 369–375.

    Article  CAS  Google Scholar 

  15. Bellucci, A., Gozzi, D., Kimura, T., Noda, T., and Otani, S., Auger electron spectroscopy of cross-section surface of oxidized titanium carbide single crystal, J. Am. Ceram. Soc., 2003, vol. 86, no. 12, pp. 2116–2121.

    Article  CAS  Google Scholar 

  16. Shabalin, I.L., Vishnyakov, V.M., Bull, D.J., Keens, S.G., Yamshchikov, L.F., and Shabalin, L.I., Initial stage of oxidation of near-stoichiometric titanium carbide at low oxygen pressures, J. Alloys Compd., 2009, vol. 472, pp. 373–377.

    Article  CAS  Google Scholar 

  17. Jiang, B., Hou, N., Huang, S., Zhou, G., Hou, J., Cao, Z., and Zhu, H., Structural studies of TiC1−x Ox solid solution by Rietveld refinement and first-principles calculations, J. Solid State Chem., 2013, vol. 204, pp. 1–8.

    Article  CAS  Google Scholar 

  18. Shabalin, I.L., Roach, D.L., and Shabalin, L.I., Oxidation of titanium carbide-graphite hetero-modulus ceramics with low carbon content: II. Physico-chemical interpretation of the ridge effect, J. Eur. Ceram. Soc., 2008, vol. 28, pp. 3177–3188.

    Article  CAS  Google Scholar 

  19. Turkdogan, E.T., Physical Chemistry of High Temperature Technology, New York: Academic, 1980.

    Google Scholar 

  20. Gruner, W. and John, A., Distinction of oxygen species in form of organic contaminations, surface oxide and bulk-oxygen for carbonitride powders, Fresenius’ J. Anal. Chem., 1993, vol. 346, no. 10, pp. 964–967.

    Article  CAS  Google Scholar 

  21. Rudneva, V.V. and Galevskii, G.V., Investigation of thermal oxidation resistance of nanopowders of refractory carbides and borides, Russ. J. Non-Ferrous Met., 2007, no. 2, pp. 143–147.

    Google Scholar 

  22. Sigworth, G.K., Elliot, J.F., Vaughn, G., and Geiger, G.H., The thermodynamics of dilute liquid nickel alloys, Can. Metall. Q., 1977, vol. 16, no. 1, pp. 104–110.

    Article  CAS  Google Scholar 

  23. Gruner, W., Determination of oxygen in oxides by carrier gas hot extraction analysis with simultaneous COx detection, Fresenius’ J. Anal. Chem., 1999, vol. 365, no. 10, pp. 597–603.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Alpatov.

Additional information

Original Russian Text © K.V. Grigorovich, A.V. Alpatov, B.A. Rumyantsev, A.V. Kasimtsev, N.Yu. Tabachkova, S.N. Yudin, E.A. Skryleva, 2015, published in Neorganicheskie Materialy, 2015, Vol. 51, No. 5, pp. 507–515.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grigorovich, K.V., Alpatov, A.V., Rumyantsev, B.A. et al. Concentration and state of light elements in titanium carbide nanopowders. Inorg Mater 51, 451–459 (2015). https://doi.org/10.1134/S0020168515050039

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168515050039

Keywords

Navigation