Skip to main content
Log in

Thermal decomposition behavior of praseodymium oxides, hydroxides, and carbonates

  • Published:
Inorganic Materials Aims and scope

Abstract

Thermal decomposition behavior was studied for Pr6O11, Pr2O3, Pr(OH3), and Pr2(CO3)3 · xH2O. In the course of transformation, the intermediate species were different for each starting material, as well as the surface area and morphology of the final thermal decomposition products. During thermal decomposition in the temperature range of 200°C up to 1400°C, mass losses for each species were attributed to the removal of hydroxide and carbonate species based on changes in the infrared bands for each powder for hydroxide groups at ≃3600 cm−1 and carbonate groups at ≃1300–1500 cm−1. X-ray diffraction analysis identified the final decomposition product at 1400°C for each species as Pr6O11 regardless of the starting material. A decrease in surface area and increase in equivalent particle radius for each final Pr6O11 product is attributed to sintering. The presence of hydroxyl and carbonate groups in the Pr6O11, Pr2O3, Pr(OH3), and Pr2 (CO3)3 · xH2O precursor dictate the morphology of thermally decomposed Pr6O11.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adachi, G., Imanaka, N., and Kang, Z.C., Binary Rare Earth Oxides, Dordrecht: Kluwer, 2004, pp. 1–55.

    Google Scholar 

  2. Gasgnier, M., Schiffmacher, G., Albert, L., and Caro, P.E., Preparation, Crystalline Properties and X-Ray Absorption Spectra of Rare Earth Oxides ROx (R = Ce, Pr, and Tb; 1.5 ≤ x ≤ 2), J. Less-Common Met., 1989, vol. 156, pp. 59–73.

    Article  CAS  Google Scholar 

  3. Sharma, R., Hinode, H., and Eyring, L., A Study of the Decomposition of Praseodymium Hydroxy Carbonate and Praseodymium Carbonate Hydrate, J. Solid State Chem., 1991, vol. 92, no. 2, pp. 401–419.

    Article  CAS  Google Scholar 

  4. Shears, E.C. and Ceram, L.I., A Study of Praseodymium Oxides by D.T.A. and Dilatometer, Br. Ceram. Trans. J., 1961, vol. 60, no. 11, pp. 773–782.

    CAS  Google Scholar 

  5. Caro, P.E., Sawyer, J.O., and Eyring, L., The Infrared Spectra of Rare Earth Carbonates, Spectrochim. Acta, Part A, 1972, vol. 28, no. 6, pp. 1167–1173.

    Article  CAS  Google Scholar 

  6. Bernal, S., Botana, F.J., Garcia, R., and Rodriquez-Izquierdo, J.M., Behavior of Rare Earth Sesquioxides Exposed to Atmospheric Carbon Dioxide and Water, React. Solids, 1987, vol. 4, nos. 1–2, pp. 23–40.

    Article  CAS  Google Scholar 

  7. Bernal, S., Diaz, J.A., Garcia, R., and Rodriguez-Izquierdo, J.M., Study of Some Aspects of the Reactivity of Lanthanum Oxide with Carbon Dioxide and Water, J. Mater. Sci., 1985, vol. 20, no. 2, pp. 537–541.

    Article  CAS  Google Scholar 

  8. Bernal, S., Botana, F.J., Garcia, R., et al., Study of the Aging in Air of a Cubic Sample of Samaria, Mater. Res. Bull., 1987, vol. 22, no. 1, pp. 131–138.

    Article  CAS  Google Scholar 

  9. Sastry, R.L.N., Yoganarasimhan, S.R., Mehrotra, P.N., and Rao, C.N.R., Preparation, Characterization, and Thermal Decomposition of Praseodymium, Terbium, and Neodymium Carbonates, J. Inorg. Nucl. Chem., 1966, vol. 28, no. 5, pp. 1165–1177.

    Article  CAS  Google Scholar 

  10. Moscardini D’Assuncao, L., Ionashiro, M., Rasera, D.E., and Giolito, I., Thermal Decomposition of the Hydrated Basic Carbonates of Lanthanides and Yttrium in CO2 Atmosphere, Thermochim. Acta, 1993, vol. 219, nos. 1–2, pp. 225–233.

    Article  Google Scholar 

  11. Haschke, J.M. and Eyring, L., Hydrothermal Equilibria and Crystal Growth of Rare Earth Oxides, Hydroxides, Hydroxynitrates, and Hydroxycarbonates, Inorg. Chem., 1971, vol. 10, no. 10, pp. 2267–2270.

    Article  Google Scholar 

  12. Popa, M. and Kakihana, M., Praseodymium Oxide Formation by Thermal Decomposition of a Praseodymium Complex, Solid State Ionics, 2001, vols. 141–142, pp. 265–272.

    Article  Google Scholar 

  13. Bernal, S., Botana, F.J., Garica, R., and Rodriguez-Izquierdo, J.M., Thermal Evolution of a Sample of Lanthanum Oxide Exposed to the Atmosphere, Thermochim. Acta, 1983, vol. 66, nos. 1–3, pp. 139–145.

    CAS  Google Scholar 

  14. Hussein, G.A.M., Formation of Praseodymium Oxide from the Thermal Decomposition of Hydrated Praseodymium Acetate and Oxalate, J. Anal. Appl. Pyrolysis, 1994, vol. 29, no. 1, pp. 89–102.

    Article  CAS  Google Scholar 

  15. Swanson, H.E. and Fuyat, R.K., Standard X-Ray Diffraction Powder Patterns, Natl. Bur. Stand. Circ. (U. S.), 1953, vol. 2, p. 65.

    Google Scholar 

  16. Greis, O., Ziel, R., Breidenstein, B., et al., Crystal Structures of Cubic α-PrOF and Rhombohedral β-PrOF from X-Ray Powder Diffraction, Mater. Sci. Forum, 1994, vols. 166–169, no. 2, pp. 677–682.

    Article  Google Scholar 

  17. Savin, V., Elyutin, A., Mikhailova, N., and Eremenko, Z., Thermochemical Study of the Process of Decomposition of Dysprosium, Lanthanum, and Neodymium Carbonates, Zh. Fiz. Khim., 1988, vol. 62, no. 5, pp. 1180–1187.

    CAS  Google Scholar 

  18. Sawyer, J., Caro, P., and Eyring, L., Hydroxycarbonates of the Lanthanide Elements, Rev. Chim. Miner., 1973, vol. 10, nos. 1–2, pp. 93–104.

    CAS  Google Scholar 

  19. Otsuka, K., Kunitomi, M., and Saito, T., Oxidation and Reduction of Praseodymium Oxides at Low Temperatures, Inorg. Chim. Acta, 1986, vol. 115, no. 1, pp. L31–L32.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. L. Treu.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Treu, B.L., Fahrenholtz, W.G. & O’Keefe, M.J. Thermal decomposition behavior of praseodymium oxides, hydroxides, and carbonates. Inorg Mater 47, 974–978 (2011). https://doi.org/10.1134/S0020168511090214

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168511090214

Keywords

Navigation