Skip to main content
Log in

Thermophysical properties of liquid squalane C30H62 within the temperature range of 298.15–413.15 k at atmospheric pressure

  • Thermophysical Properties of Materials
  • Published:
High Temperature Aims and scope

Abstract

The measurements results of the sound speed, density, and isobaric heat capacity of liquid squalane on the saturation line and at atmospheric pressure within the temperature range of 263.15–413.15 K are presented. The data obtained are used to calculate the ratio of the heat capacities, γ; adiabatic, β S , and isothermal, β T , compressibilities; thermal expansion coefficient, α P , thermal pressure coefficient, \(\left( {\frac{{\partial P}} {{\partial T}}} \right)_V \) and also to estimate the energy of the intermolecular interaction on the basis of the discrete-continuum model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Neruchev, Yu.A., Bolotnikov, M.F., and Zotov, V.V., High Temp., 2005, vol. 43, no. 2, p. 266.

    Article  Google Scholar 

  2. Neruchev, Yu.A., Zotov, V.V., Verveiko, V.N., Mel’nikov, G.A., Melikhov, Yu.F., and Verveiko, M.V., GSSSD ME 155 (State Service of Standard Reference Data: Experimental Techniques, 155), Moscow: STANDARTINFORM, 2009.

    Google Scholar 

  3. Dubey, G.P. and Sharma, M., J. Chem. Eng. Data, 2008, vol. 53, p. 1032.

    Article  Google Scholar 

  4. NIST Chemistry WebBook (http://webbook.nist.gov/chemistry).

  5. Fermeglia, M. and Torriano, G., J. Chem. Eng. Data, 1999, vol. 44, p. 965.

    Article  Google Scholar 

  6. Fandino, O., Pensado, A.S., Lugo, L., Comunas, M.J.P., and Fernandez, J., J. Chem. Eng. Data, 2005, vol. 50, p. 939.

    Article  Google Scholar 

  7. Heilbron, I.M., Hilditch, T.P., and Kamm, E.D., J. Chem. Soc., 1926, p. 3131.

  8. Sörensen, N.A., Gillebo, T., Holtermann, H., and Sörensen, J.S., Acta Chem. Scand., 1951, vol. 5, p. 757.

    Article  Google Scholar 

  9. Sax, K.J. and Stross, F.H., Anal. Chem., 1957, vol. 29, p. 1700.

    Article  Google Scholar 

  10. Korosi, G. and Kovats, E.S., J. Chem. Eng. Data, 1981, vol. 26, p. 323.

    Article  Google Scholar 

  11. Castells, R.C. and Nardillo, A.M., J. Solution Chem., 1985, vol. 14, p. 87.

    Article  Google Scholar 

  12. An, X.W., He, J., and Hu, R.H., Thermochim. Acta, 1990, vol. 169, p. 331.

    Article  Google Scholar 

  13. Trejo, L.M., Costas, M., and Patterson, D., Int. DATA Ser., Sel. Data Mixtures, Ser. A, 1991, vol. 19, p. 9.

    Google Scholar 

  14. Kumagai, A. and Takahashi, S., Int. J. Thermophys., 1995, vol. 16, p. 773.

    Article  ADS  Google Scholar 

  15. Harris, K.R., J. Chem. Eng. Data, 2009, vol. 54, p. 2729.

    Article  Google Scholar 

  16. Dubey, G.P., Sharma, M., and Oswal, S., J. Chem. Thermodyn., 2009, vol. 41, p. 849.

    Article  Google Scholar 

  17. Durupt, N., Aoulmi, A., Bouroukba, M., and Rogalski, M., Thermochim. Acta, 1996, vol. 274, p. 73.

    Article  Google Scholar 

  18. Neruchev, Yu.A. and Bolotnikov, M.F., High Temp., 2008, vol. 46, no. 1, p. 40.

    Article  Google Scholar 

  19. Neruchev, Yu.A., Diskretno-kontinual’naya model’ dlya prognozirovaniya ravnovesnykh svoistv organicheskikh zhidkostei (Discrete-Continuum Model for Prediction of Equilibrium Properties of Organic Liquids), Kursk: Kursk State University, 2001.

    Google Scholar 

  20. Ryshkova, O.S. and Neruchev, Yu.A., High Temp., 2009, vol. 47, no. 5, p. 664.

    Article  Google Scholar 

  21. Bolotnikov, M.F. and Neruchev, Yu.A., Russ. J. Phys. Chem. A, 2006, vol. 80, no. 8, p. 1191.

    Article  Google Scholar 

  22. Mokbel, I., Blondel-Telouk, A., Vellut, D., and Jose, J., Fluid Phase Equilib., 1998, vol. 149, p. 287.

    Article  Google Scholar 

  23. Von Niederhausern, D.M., Wilson, G.M., and Giles, N.F., J. Chem. Eng. Data, 2000, vol. 45, p. 157.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.I. Korotkovskii, A.V. Lebedev, O.S. Ryshkova, M.F. Bolotnikov, Yu.E. Shevchenko, Yu.A. Neruchev, 2012, published in Teplofizika Vysokikh Temperatur, 2012, Vol. 50, No. 4, pp. 504–508.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korotkovskii, V.I., Lebedev, A.V., Ryshkova, O.S. et al. Thermophysical properties of liquid squalane C30H62 within the temperature range of 298.15–413.15 k at atmospheric pressure. High Temp 50, 471–474 (2012). https://doi.org/10.1134/S0018151X12040116

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X12040116

Keywords

Navigation