Skip to main content
Log in

Atlantic-Type Passive Margin Structural Style of the Cretaceous Basin in Northern Tunisia: Paleoslope Reconstruction and Regional Tectonics

  • Published:
Geotectonics Aims and scope

Abstract

The purpose of this paper is to characterize the configuration of northern Tunisia’s basin during the Cretaceous on the basis of abundant slump folds and frequent synsedimentary faults. The slump folds are studied to determine the slumps transport vergence on the synsedimentary submarine paleoslope. The local and regional stress field is used to characterize the syn-sedimentary deformation. During Valanginian–Aptian times, the basin is characterized by southward submarine slope. From Albian to Santonian times, the slump folds analysis provides NNW- to NW-ward sloping topography. The fault kinematic analysis reveals regional NW- to NNW-trending Cretaceous tectonic extension. Locally, NE- to N-trending extension is characterized. Perturbation of paleoslope orientation is locally observed probably related to salt tectonics hyperactive during Aptian–Albian. The constructed regional cross-section shows a tilted block geometry governed by major basement faults associated to other intra-basin growth faults. The basin shows ±5° seaward facing submarine paleoslope. In addition, some structures are probably dominated by raft tectonics. All these features are fairly consistent with the conclusion that the basin is very similar to the present-day Atlantic-type passive margins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. R. W. Allmendinger, N. C. Cardozo, and D. Fisher, Structural Geology Algorithms: Vectors and Tensors (Cambridge Univ. Press, Cambridge, UK, 2013).

    Google Scholar 

  2. G. I. Alsop and S. Marco, “Soft-sediment deformation within seismogenic slumps of the Dead Sea Basin,” J. Struct. Geol. 33 (4), 433–457 (2011).

    Article  Google Scholar 

  3. G. I. Alsop and S. Marco, “A large-scale radial pattern of seismogenic slumping towards the Dead Sea basin,” J. Geol. Soc. 169 (1), 99–110 (2012a).

    Article  Google Scholar 

  4. G. I. Alsop and S. Marco, “Tsunami and seiche-triggered deformation within offshore sediments,” Sediment. Geol. 261–262, 90–107 (2012b).

  5. G. I. Alsop and S. Marco, “Seismogenic slump folds formed by gravity-driven tectonics down a negligible subaqueous slope,” Tectonophysics, 605, 48–69 (2013).

    Article  Google Scholar 

  6. G. I. Alsop and S. Marco, “Fold and fabric relationships in temporally and spatially evolving slump systems: A multi-cell flow model,” J. Struct. Geol. 63, 27–49 (2014).

    Article  Google Scholar 

  7. Z. Amri, C. Naji, A. Masrouhi, and O. Bellier, “Interconnection salt diapir–allochthonous salt sheet in northern Tunisia: The Lansarine–Baoula case study,” J. Afr. Earth Sci. 170, 103876 (2020).

    Article  Google Scholar 

  8. J. Angelier and P. Mechler, “Sur une méthode graphique de recherche des contraintes principales également utilisable en tectonique et en séismologie: la méthode des dièdres droits,” Bull. Soc. Géol. France 19, 1309–1318 (1977).

    Article  Google Scholar 

  9. M. Bachari, D. Grosheny, S. Ferry, C. France-Lanord, and M. H. Negra, “The Cenomanian-Turonian boundary event (CTEB) in north-central Tunisia (Jebels Serj and Bargou) integrated into regional data (Algeria to Tunisia),” Cretaceous Res. 94, 108–125 (2018).

    Article  Google Scholar 

  10. N. Bahrouni, Y. Houla, M. Soussi, M. Boughdiri, W. B. Ali, A. Nasri, and S. Bouaziz, “Discovery of Jurassic ammonite-bearing series in Jebel Bou Hedma (South-Central Tunisian Atlas): Implications for stratigraphic correlations and paleogeographic reconstruction,” J. Afr. Earth Sci. 113 (1), 101–113 (2016).

    Article  Google Scholar 

  11. N. Bahrouni, F. Masson, F. Meghraoui, M. Saleh, R. Maamri, F. Dhaha, and M. Arfaoui, “Active tectonics and GPS data analysis of the Maghrebian thrust belt and Africa–Eurasia plate convergence in Tunisia,” Tectonophysics 785, 228–440 (2020).

    Article  Google Scholar 

  12. N. Ben Chaabane, F. Khemiri, M. Soussi, J. L. Latil, E. Robert, and I. Belhaj Taher, “Aptian–Lower Albian Serdj carbonate platform of the Tunisian Atlas: Development, demise and petroleum implication,” Mar. Petrol. Geol. 101, 566–591 (2019).

    Article  Google Scholar 

  13. A. Ben Ferjani, P. F. Burollet, and F. Mejri, “Petroleum Geology of Tunisia” (ETAP Publ., 1990).

    Google Scholar 

  14. S. Bey, J. Kuss, I. P. Silva, M. H. Negra, and S. Gardin, “Fault-controlled stratigraphy of Late Cretaceous Abiod formation at Ain Medheker (Northeast Tunisia),” Cretaceous Res. 34, 10–25 (2012).

    Article  Google Scholar 

  15. W. Bosworth, R. Guiraud, and L. G. Kessler, “Late Cretaceous (ca. 84 Ma) compressive deformation of the stable shelf of northeast Africa (Egypt); far-field stress effects of the “Santonian event” and origin of the Syrian arc,” Geology 27, 633–636 (1999).

    Article  Google Scholar 

  16. M. H. P. Bott, “Rifted passive margins,” in Developments in Geotectonics (Elsevier, 2006. Vol. 25. Ch. 11), pp. 409–426.

    Google Scholar 

  17. M. Boughdiri, F. Cordey, H. Sallouhi, K. Maalaoui, A. Masrouhi, and M. Soussi, “Jurassic radiolarian-bearing series of Tunisia: Biostratigraphy and significance to western Tethys correlations,” Swiss J. Geosci. 100, 431–441 (2007).

    Article  Google Scholar 

  18. D. Bradley and L. Hanson, “Paleoslope Analysis of Slump Folds in the Devonian Flysch of Maine,” J. Geol. 106, 305–318 (1998).

    Google Scholar 

  19. P. F. Burollet, “Contribution à l’étude stratigraphique de la Tunisie centrale,” Ann. Min. Géol., Tunisie 18 (1956).

    Google Scholar 

  20. N. Cardozo and R. W. Allmendinger, “Spherical projections with OSX stereonet,” Comput. Geosci. 51, 193–205 (2013).

    Article  Google Scholar 

  21. T. Cavailhes, A. Rotevatn, S. Monstad, A. Ben Khala, E. Funk, K. Canner, M. Looser, A. Chalabi, A. Gay, A. Travé, F. Ferhi, A. Skanji, R. M. Chebbi, and N. Bang, “Basin tectonic history and paleophysiography of the pelagian platform, northern Tunisia, using vitrinite reflectance data,” Basin Res. 30, 926–941 (2018).

    Article  Google Scholar 

  22. M. Chikhaoui, A. L. Maamouri, J. Salaj, M. M. Turki, J. Saadi, M. Ben Youssef, M. Ghanmi, and M. Zarbout, “Tilted blocks during the Early Cretaceous in the El Kef area (northwestern Tunisia),” C. R. Acad. Sci. Ser. IIA: Earth Planet. Sci. 327, 265–270 (1998).

    Google Scholar 

  23. T. N. Debacker and E. De Meester, “A regional, S-dipping late Early to Middle Ordovician palaeoslope in the Brabant Massif, as indicated by slump folds (Anglo-Brabant Deformation Belt, Belgium),” Geol. Belg. 12 (3–4), 145−159 (2009).

  24. T. N. Debacker, “Folds and cleavage/fold relationships in the Brabant Massif, southeastern Anglo-Brabant Deformation Belt,” Geol. Belg. 15 (1–2), 81–95 (2012).

  25. D. Delvaux and B. Sperner, “Stress tensor inversion from fault kinematic indicators and focal mechanism data: the TENSOR program,” Spec. Publ.—Geol. Soc. London 212, 75–100 (2003).

    Article  Google Scholar 

  26. C. Doglioni, E. Gueguen, F. Sabat, and M. Fernandez, “The western Mediterranean extensional basins and the Alpine orogeny,” Terra Nova 9, 109–112 (1997).

    Article  Google Scholar 

  27. C. G. Elliott and P. F. Williams, “Sediment slump structures: A review of diagnostic criteria and application to an example from Newfoundland,” J. Struct. Geol. 10 (2), 171–182 (1988).

    Article  Google Scholar 

  28. Etude Géologique du Massif Serj-Bargou (Atlas Tunisien Central), Ed. by M. M. Turki (Thèse 3ème Cycle, Univ. Pierre Et Marie Curie Paris. 1975. Vol. 5).

  29. J. Frey-Martinez, J. Cartwrightn, and B. Hall, “3D seismic interpretation of slump complexes: examples from the continental margin of Israel,” Basin Res. 17, 83–108 (2005).

    Article  Google Scholar 

  30. D. Frizon de Lamotte, B. S. Bezar, R. Bracène, and E. Mercier,” The two main steps of the atlas building and geodynamics of the Western Mediterranean,” Tectonics 19 (4), 740–761 (2002).

    Article  Google Scholar 

  31. D. Frizon de Lamotte, C. Raulin, N. Mouchot, J. C. Wrobel-Daveau, C. Blanpied, and J. C. Ringenbach, “The southernmost margin of the Tethys realm during the Mesozoic and Cenozoic: Initial geometry and timing of the inversion processes,” Tectonics 30 (3), TC3002 (2011).

    Article  Google Scholar 

  32. M. Ghanmi, J. M. Vila, M. Ben Youssef, M. Jouirou, and F. Zargouni, “Diversité des Corps salifères du nord-est du Maghreb: Les lames et les lentilles triasiques de Touireuf à Nebeur (moyen Mellègue, nord-ouest tunisien): Un “glacier de sel” sous-marin composite et segmenté du Crétacé inférieur; intérêt pétrolier,” in Proceedings of the 10th Tunisian Petroleum Exploration & Production Conference (ETAP Mem. 2006. Vol. 26), pp. 144–172.

  33. M. Gharbi, A. Masrouhi, N. Espurt, O. Bellier, E. Amari, M. Ben Youssef, and M. Ghanmi, “New tectono-sedimentary evidences for Aptian to Santonian extension of the Cretaceous rifting in the Northern Chotts range (Southern Tunisia),” J. Afr. Earth Sci. 79, 58–73 (2013).

    Article  Google Scholar 

  34. M. Gharbi, O. Bellier, A. Masrouhi, and N. Espurt, “Recent spatial and temporal changes in the stress regime along the southern Tunisian Atlas front and the Gulf of Gabes: new insights from fault kinematics analysis and seismic profiles,” Tectonophysics 626, 120–136 (2014).

    Article  Google Scholar 

  35. M. Gharbi, N. Espurt, A. Masrouhi, O. Bellier, and E. A. Amari, “Style of Atlassic tectonic deformation and geodynamic evolution of the southern Tethyan margin, Tunisia,” Mar. Pet. Geol. 66, 801–816 (2015).

    Article  Google Scholar 

  36. Geologic Map of Ouergha 1 : 50 000, Sheet no. 38, Ed. by P. Sainfeld, J. Archambault, Des Ligneris, J. Pimenta, and M. Arnould (Natl. Geol. Surv., Natl. Off. Mines, Tunisia, 1951).

  37. Geologic Map of Le Kef 1 : 50 000, Sheet no. 44, Ed. by P. Sainfeld, P. F. Burollet, and E. Dumon (Natl. Geol. Surv., Natl. Off. Mines, Tunisia, 1953).

  38. Geologic Map of Maktar 1 : 50 000, Sheet no. 53, Ed. by A. Jauzein, A. Kouadja, G. Des Ligneris, D. Derthe, and J. Quoix (Natl. Geol. Surv., Natl. Off. Mines, Tunisia, 1961).

  39. Geologic Map of Tunisia 1 : 500 000, Ed. by M. Ben Haj Ali, Y. Jedoui, T. Dali, H. Ben Salem, and L. Memmi (Natl. Geol. Surv., Natl. Off. Mines, Tunisia, 1985).

  40. Geologic Map of Les Salines 1 : 50 000, Sheet no. 45, Ed. by K. Mahjoub (Natl. Geol. Surv., Natl. Off. Mines, Tunisia, 1992).

  41. Geologic Map of Nebeur 1 : 50 000, Sheet no. 39, Ed. by M. Fakraoui, M. Ghanmi, M. Chikhaoui, and A. Biely (Natl. Geol. Surv., Natl. Off. Mines, Tunisia, 1994).

  42. Geologic Map of Siliana 1 : 50 000, Sheet no. 46, Ed. by M. Fakraoui (Natl. Geol. Surv., Natl. Off. Mines, Tunisia, 1998).

  43. Geologic Map of Bargou 1 : 50 000, Sheet no. 47, Ed. by K. Mahjoub and T. Dali (Natl. Geol. Surv., Natl. Off. Mines, Tunisia, 2000).

  44. R. Guiraud and W. Bosworth, “Senonian basin inversion and rejuvenation of rifting in Africa and Arabia: Synthesis and implications to plate-scale tectonics,” Tectonophysics 282, 39–82 (1997).

    Article  Google Scholar 

  45. R. Guiraud, “Mesozoic rifting and basin inversion along the northern African Tethyan margin: An overview,” Spec. Publ.—Geol. Soc. London 133, 217–229 (1998).

    Article  Google Scholar 

  46. E. Jaillard, T. Dumont, J. Ouali, J. P. Bouillin, A. Chihaoui, J. L. Latil, H. Arnaud, H.A. Arnaud-Vanneau, and I. Zghal, “The Albian tectonic “crisis” in Central Tunisia: Nature and chronology of the deformations,” J. Afr. Earth Sci. 85, 75–86 (2013).

    Article  Google Scholar 

  47. E. Jaillard, J. P. Bouillin, J. Ouali, T. Dumont, J. L. Latil, and A. Chihaoui, “Albian salt tectonics in Central Tunisia: Evidences for an Atlantic-type passive margin,” J. Afr. Earth Sci. 135, 220–234 (2017).

    Article  Google Scholar 

  48. E. Jaillard, A. Chihaoui, J. L. Latil, and I. Zghal, “Sequences, discontinuities and water stratification in a low-energy ramp: the Early Albian sedimentation in central Tunisia,” Int. J. Earth Sci. 110 (1), 263–285 (2020).

    Article  Google Scholar 

  49. C. Jallouli, S. Mogren, K. Mickus, and M. M. Turki, “Evidence for an east–west regional gravity trend in northern Tunisia: Insight into the structural evolution of northern Tunisian Atlas,” Tectonophysics 608, 149–160 (2013).

    Article  Google Scholar 

  50. A. Jauzein, “Contribution à l’étude géologique des confins de la dorsale tunisienne (Tunisie Septentrionale),” Ann. Mines. Géol. Tunis 22 (1967).

    Google Scholar 

  51. O. T. Jones, “The geology of the Colwyn Bay district: a study of submarine slumping during the Salopian period,” Quart. J. Geol. Soc. London 380, 335–382 (1939).

    Article  Google Scholar 

  52. O. T. Jones, “On the sliding or slumping of submarine sediments in Denbighshire, North Wales, during the Ludlow Period,” Quart. J. Geol. Soc. London 93, 241–283 (1940).

    Article  Google Scholar 

  53. F. Kamoun, B. Peybernes, R. Ciszak, and S. Calzada, “Triassic paleogeography of Tunisia,” Palaeogeogr., Palaeoclimatol., Palaeoecol. 172 (3–4), 223–242 (2001).

  54. S. Khomsi, M. Bédir, M. Soussi, M. G. Ben Jemia, and K. Ben Ismail-Lattrache, “Mise en évidence en subsurface d’événements compressifs Eocène moyen-supérieur en Tunisie orientale (Sahel): Généralité de la phase atlasique en Afrique du Nord,” C. R. Géosci. 338 (1–2), 41–49 (2006).

  55. S. Khomsi, M. G. Ben Jemia, D. Frizon de Lamotte, C. Maherssi, O. Echihi, and R. Mezni, “An overview of the Late Cretaceous–Eocene positive inversions and Oligo-Miocene subsidence events in the foreland of the Tunisian Atlas: structural style and implications for the tectonic agenda of the Maghrebian Atlas system,” Tectonophysics 475, 38–58 (2009).

    Article  Google Scholar 

  56. S. Khomsi, D. F. de Lamotte, M. Bédir, and O. Echihi, “The Late Eocene and Late Miocene fronts of the Atlas Belt in eastern Maghreb: Integration in the geodynamic evolution of the Mediterranean Domain,” Arab. J. Geosci. 9 (650), 1–20 (2016).

    Article  Google Scholar 

  57. S. Khomsi, F. Roure, M. Khelil, R. Mezni, and O. Echihi, “A review of the crustal architecture and related pre-salt oil/gas objectives of the eastern Maghreb Atlas and Tell: Need for deep seismic reflection profiling,” Tectonophysics 766, 232–248 (2019).

    Article  Google Scholar 

  58. V. A. Krasheninnikov, J. K. Hall, F. Hirsch, H. Benjamini, and A. Flexer, “Geological Framework of the Levant”, in Cyprus and Syria (Historical Productions-Hall, Jerusalem, Israel, 2005, Vol. 1).

    Google Scholar 

  59. R. Leprêtre, D. Frizon de Lamotte, V. Combier, O. Gimeno-Vives, G. Mohn, and R. Eschard, “The Tell-Rif orogenic system (Morocco, Algeria, Tunisia) and the structural heritage of the southern Tethys margin,” BSGF–Earth Sci. Bull. 189 (2), 1–10 (2018).

    Google Scholar 

  60. C. Martinez, M. Chikhaoui, R. Truillet, J. Ouali, and G. Creuzot, “Le contexte géodynamique de la distension albo-aptienne en Tunisie septentrionale et centrale: structuration éocrétacée de l’Atlas tunisien,” Eclogae Geol. Helv. 84 (1), 61–82 (1991).

    Google Scholar 

  61. J. D. Martín-Martín, J. Vergés, E. Saura, M. Moragas, G. Messager, V. Baqués, P. Razin, C. Grélaud, M. Malaval, R. Joussiaume, E. Casciello, I. Cruz-Orosa, and D. W. Hunt, “Diapiric growth within an Early Jurassic rift basin: the Tazoult salt wall (Central High Atlas, Morocco),” Tectonics 36 (1), 2–32 (2017).

    Article  Google Scholar 

  62. A. Masrouhi, M. Ghanmi, M. M. Ben Slama, M. Ben Youssef, J. M. Vila, and F. Zargouni, “New tectono-sedimentary evidence constraining the timing of the positive tectonic inversion and the Eocene Atlasic phase in northern Tunisia: Implication for the North African paleo-margin evolution,” C. R. Geosci. 340, 771–778 (2008).

    Article  Google Scholar 

  63. A. Masrouhi and H. A. Koyi, “Submarine ‘salt glacier’ of Northern Tunisia, a case of Triassic salt mobility in North African Cretaceous passive margin,” Spec. Publ.—Geol. Soc. London 363, 579–593 (2012).

    Article  Google Scholar 

  64. A. Masrouhi, O. Bellier, H. Koyi, J. M. Vila, and M. Ghanmi, “The evolution of the Lansarine–Baouala salt canopy in the North African Cretaceous passive margin in Tunisia,” Geol. Mag. 150 (5), 835–861 (2013).

    Article  Google Scholar 

  65. A. Masrouhi, O. Bellier, M. Ben Youssef, and H. Koyi, “Submarine allochthonous salt sheets: Gravity-driven deformation of North African Cretaceous passive margin in Tunisia—Bled Dogra case study and nearby salt structures,” J. Afr. Earth Sci. 97, 125–142 (2014a).

    Article  Google Scholar 

  66. A. Masrouhi, O. Bellier, and H. Koyi, “Geometry and structural evolution of Lorbeus diapir, northwestern Tunisia: polyphase diapirism of the North African inverted passive margin,” Int. J. Earth Sci. 103, 881–900 (2014b).

    Article  Google Scholar 

  67. A. Masrouhi, M. Gharbi, O. Bellier, and M. Ben Youssef, “The Southern Atlas Front in Tunisia and its foreland basin: Structural style and regional-scale deformation,” Tectonophysics 764, 1–24 (2019).

    Article  Google Scholar 

  68. H. Mattoussi Kort, D. Gasquet, M. Ikenne, and N. Laridhi Ouazaa, “Cretaceous crustal thinning in North Africa: Implications for magmatic and thermal events in the Eastern Tunisian margin and the Pelagic Sea,” J. Afr. Earth Sci. 55 (5), 257–264 (2009).

    Article  Google Scholar 

  69. L. Memmi, “L’Aptien et l’Albien de Tunisie: Biostratigraphie à partir des ammonites,” Bull. Soc. Géol. France 170 (3), 303–309 (1999).

    Google Scholar 

  70. M. Moragas, J. Vergés, E. Saura, J. D. Martín-Martín, G. Messager, O. Merino Tomé, I. Suarez-Ruiz, P. Razin, C. Grélaud, M. Malaval, R. Joussiaume, and D. W. Hunt, “Jurassic rifting to post-rift subsidence analysis in the Central High Atlas and its relation to salt diapirism,” Basin Res. 30, 336–362 (2016).

    Article  Google Scholar 

  71. M. Moragas, J. Vergés, T. Nalpas, E. Saura, J. D. Martin-Martin, G. Messager, and D. W. Hunt, “The impact of syn- and post-extension prograding sedimentation on the development of salt-related rift basins and their inversion: Clues from analogue modeling,” Mar. Petrol. Geol. 88, 985–1003 (2017).

    Article  Google Scholar 

  72. M. Moragas, V. Baqués, A. Travé, J. D. Martín-Martín, E. Saura, G. Messager, D. W. Hunt, and J. Vergés, “Diagenetic evolution of lower Jurassic platform carbonates flanking the Tazoult salt wall (Central High Atlas, Morocco),” Basin Res. 32 (3), 546–566 (2019).

    Article  Google Scholar 

  73. C. Morelli and R. Nicolich, “A cross section of the lithosphere along the European Geotraverse Southern Segment (from the Alps to Tunisia),” Tectonophysics 176 (1–2), 229–243 (1990).

  74. C. Naji, M. Gharbi, Z. Amri, A. Masrouhi, and O. Bellier,“Temporal and spatial changes of the submarine Cretaceous paleoslope in Northern Tunisia, inferred from Slump folds analysis,” Proc. Geol. Assoc. 129, 40–56 (2018a).

    Article  Google Scholar 

  75. C. Naji, A. Masrouhi, Z. Amri, M. Gharbi, and O. Bellier,“Cretaceous paleomargin tilted blocks geometry in northern Tunisia: Stratigraphic consideration and fault kinematic analysis,” Arab. J. Geosci. 11 (583), 1–21 (2018b).

    Article  Google Scholar 

  76. H. Ortner, “Styles of soft-sediment deformation on top of a growing fold system in the Gosau Group at Muttekopf, Northern Calcareous Alps, Austria: Slumping versus tectonic deformation,” Sediment. Geol. 196 (1–4), 99–118 (2007).

  77. V. Perthuisot, H. Rouvier, and A. Smati, “Style et importance des déformations anté-vraconnienes dans le Maghreb oriental: Exemple du diapir du Jebel Slata,” Bull. Soc. Géol. France 8, 389–398 (1998).

    Google Scholar 

  78. Polycinématique et Contrôle Sédimentaire Associée sur la Cicatrice Zaghouan-Nebhana, Ed. by M. M. Turki (Thèse Doctorat d’Etat, Univ. Tunis Rev. Sci. Terre, Tunisie. 1985, Vol. 7).

    Google Scholar 

  79. C. Raulin, D. F. de Lamotte, S. Bouaziz, S. Khomsi, N. Mouchot, G. Ruiz, and F. Guillocheau, “Late Triassic–early Jurassic block tilting along E–W faults, in southern Tunisia: New interpretation of the Tebaga of Medenine,” J. Afr. Earth Sci. 61 (1), 94–104 (2011).

    Article  Google Scholar 

  80. Yu. L. Rebetsky, N. A. Sycheva, O. A. Kuchay, and R. E. Tatevossian, “Development of inversion methods on fault slip data. Stress state in orogenes of the central Asia,” Tectonophysics 581, 114–131 (2012).

    Article  Google Scholar 

  81. Yu. L. Rebetsky, L. A. Sim, and A. V. Marinin, From Sliding Mirrors to Tectonic Stresses. Methods and Algorithms (GEOS, Moscow, 2017) [in Russian].

    Google Scholar 

  82. Yu. L. Rebetsky and A. Yu. Polets, “The method of cataclastic analysis of discontinuous displacements,” in Moment Tensor Solutions, Ed. by Sebastiano D’Amico (Springer Nat. Hazards, 2018), pp. 111–162.

    Google Scholar 

  83. Research Group for Lithospheric Structure in Tunisia, “The EGT’85 seismic experiment in Tunisia: A reconnaissance of the deep structures,” Tectonophysics 207, 245–267 (1992).

    Article  Google Scholar 

  84. F. Robaszynski, F. Amédro, and M. Caron, “La limite Cénomanien–Turonien et la Formation Bahloul dans quelques localités de Tunisie Centrale,” Cretaceous Res. 14 (4–5), 477–486 (1993).

  85. F. Robaszynski, “The Upper Cretaceous of the Kalaat Senan region, Central Tunisia. Integrated litho-biostratigraphy based on ammonites, planktonic foraminifera and nannofossils zones from upper Turonian to Maastrichtian,” Bull. Cent. Rech. Elf Explor. Prod. 22 (2), 359–490 (2000).

    Google Scholar 

  86. E. Saura, J. Vergés, J. D. Martín-Martín, G. Messager, M. Moragas, P. Razin, C. Grélaud, R. Joussiaume, M. Malaval, S. Homke, and D. W. Hunt, “Syn- to post-rift diapirism and minibasins of the Central High Atlas (Morocco): the changing face of a mountain belt,” J. Geol. Soc. London 171, 97–105 (2014).

    Article  Google Scholar 

  87. A. W. Snoke, S. Schamel, and R. M. Karasek, “Structural evolution of Djebel Debadib anticline: A clue to the regional tectonic style of the Tunisian Atlas,” Tectonics 7 (3), 497–516 (1988).

    Article  Google Scholar 

  88. M. Soua, N and Tribovillard, “Modèle de sédimentation au passage Cénomanien/Turonien pour la formation Bahloul en Tunisie,” Cretaceous Res. 339, 692–701 (2007).

    Google Scholar 

  89. M. Soua, O. Echihi, M. Herkat, D. Zaghbib-Turki, J. Smaoui, H. Fakhfakh-Ben Jemia, and H. Belghaji, “Structural context of the paleogeography of the Cenomanian–Turonian anoxic event in the eastern Atlas basins of the Maghreb,” Cretaceous Res. 341, 1029–1037 (2009).

    Google Scholar 

  90. P. Souquet, B. Peybernes, J. Saadi, M. Ben Youssef, M. Ghanmi, M. Zarbout, M. Chikhaoui, and F. Kamoun, “Séquences et cycles d’ordre 2 en régime extensif et transtensif: exemple du Crétacé inférieur de l’Atlas tunisien,” Bull. Soc. Géol. France 168, 373–386 (1997).

    Google Scholar 

  91. M. Soussi, G. Niedźwiedzki, M. Tałanda, D. Dróżdż, T. Sulej, K. Boukhalfa, J. Mermer, and B. Błażejowski, “Middle Triassic (Anisian–Ladinian) Tejra red beds and Late Triassic (Carnian) carbonate sedimentary records of southern Tunisia Saharan Platform: Biostratigraphy, sedimentology and implication on regional stratigraphic correlations,” Mar. Petrol. Geol. 79, 222–256 (2017).

    Article  Google Scholar 

  92. L. J. Strachan and G. I. Alsop, “Slump folds as estimators of palaeoslope: A case study from the Fisherstreet Slump of County Clare, Ireland,” Basin Res. 18, 451–470 (2006).

    Article  Google Scholar 

  93. L. J. Strachan, “Flow transformations in slumps: A case study from the Waitemata Basin, New Zealand,” Sedimentology 55, 1311–1332 (2008).

    Article  Google Scholar 

  94. M. D. Tranos, “The use of Stress Tensor Discriminator Faults in separating heterogeneous fault-slip data with best-fit stress inversion methods,” J. Struct. Geol. 102, 168–178 (2017).

    Article  Google Scholar 

  95. M. M. Turki, “Les inversions tectoniques de la Tunisie centro-septentrionale,” Bull. Soc. Géol. France 8 (3), 399–406 (1988).

    Article  Google Scholar 

  96. A. J. Van Loon, “Soft-sediment deformation structures in siliciclastic sediments: An overview,” Geologos 15 (1), 3–55 (2009).

    Google Scholar 

  97. J. Vergés, Y. Poprawski, Y. Almar, P. A. Drzewiecki, M. Moragas, T. Bover-Arnal, C. Macchiavelli, W. Wright, G. Messager, J. C. Embry, and D. Hunt, “Tectono-sedimentary evolution of Jurassic–Cretaceous diapiric structures: Miravete anticline, Maestrat Basin, Spain,” Basin Res. 32 (6), 1653–1684 (2020).

    Article  Google Scholar 

  98. J. M. Vila, M. Ben Youssef, S. Bouhlel, M. Ghanmi, S. Kassâa, and F. Miaadi, “Tectonique en radeaux au toit d’un ‘‘glacier de sel’’ sous-marin albien de Tunisie du Nord-Ouest: Exemple du secteur minier de Gueurn Halfaya,” C. R. Acad. Sci. 327, 563–570 (1998).

    Google Scholar 

  99. N. H. Woodcock, “Ludlow Series slumps and turbidites and the form of the Montgomery Trough, Powys, Wales,” Proc. Geol. Assoc. 87, 169–182 (1976a).

    Article  Google Scholar 

  100. N. H. Woodcock, “Structural style in slump sheets: Ludlow series Powys, Wales,” J. Geol. Soc. London 132, 399–415 (1976b).

    Article  Google Scholar 

  101. N. H. Woodcock, “The use of slump structures as palaeoslope orientation estimators,” Sedimentology 26, 83–99 (1979).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

Authors are indebted to Prof. N. H. Woodcock (University of Cambridge, Cambridge, United Kingdom), Prof. I. G. Alsop (University of Aberdeen, Aberdeen, Scotland, United Kingdom) and Dr. L. J. Strachan (University of Auckland, Auckland, New Zealand) for great helpful discussions about the methodology, transport determination techniques and interpretation of slump folds. The Stereonet 9 software, written by R. Allmendinger (Cornell University, Ithaca, New York, United States) was used. We are grateful to Frank Thomas (Aix Marseille University, Marseille, France) for providing constructive help that substantially improved the structure of this paper.

Authors are grateful to anonymous Reviewer and reviewer Prof. Yu. L. Rebetsky (Shmidt Institute of Physics of the Earth, Moscow, Russia) for useful comments.

Funding

This work was financially supported by the Tunisian Ministry of Higher Education and Scientific Research (CERTE, Geo-resources Laboratory funding) and the French Ministry of Foreign Affairs grant through French Embassy in Tunisia (CMCU program).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ch. Naji.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naji, C., Amri, Z., Masrouhi, A. et al. Atlantic-Type Passive Margin Structural Style of the Cretaceous Basin in Northern Tunisia: Paleoslope Reconstruction and Regional Tectonics. Geotecton. 56, 85–106 (2022). https://doi.org/10.1134/S0016852122010034

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016852122010034

Keywords:

Navigation