Skip to main content
Log in

Pitch-Angle Diffusion of Radiation Belt Electrons and Precipitating Particle Fluxes: Dependence on VLF Wavefield Parameters

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The dependence of the pitch-angle diffusion efficiency of energetic electrons in the Earth’s magnetosphere on the distribution of the whistler wave field along the geomagnetic flux tube is quantitatively studied for parameters corresponding to the location of the Sura and HAARP HF heating facilities. The expansion of the precipitation energy range with the increase of the region of geomagnetic latitudes occupied by the waves is shown. Using the calculated pitch-angle diffusion coefficient for a given spectrum of waves and their distribution along the flux tube, the ratio of the fluxes of precipitating and trapped particles at low altitude is determined. It is shown that at typical wave intensities corresponding to chorus VLF waves and plasmaspheric hiss, the fluxes of precipitating and trapped electrons can be comparable to each other. At the same time, for the wave amplitudes observed as a result of the action of heating facilities, the flux of precipitating electrons is negligible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Abel, B. and Thorne, R.M., Electron scattering and loss in earth’s inner magnetosphere: 1. dominant physical processes, J. Geophys. Res., 1998a, vol. 103, no. 2, pp. 2385–2396.

    Article  CAS  Google Scholar 

  2. Abel, B. and Thorne, R.M., Electron scattering and loss in earth’s inner magnetosphere: 2. sensitivity to model parameters, J. Geophys. Res., 1998b, vol. 103, no. 2, pp. 2397–2407.

    Article  Google Scholar 

  3. Andronov, A.A. and Trakhtengerts, V.Yu., Kinetic instability of the Earth’s radiation belts, Geomagn. Aeron., 1964, no. 2, pp. 233–242.

  4. Artemyev, A.V., Demekhov, A.G., Zhang, X.-J., et al., Role of ducting in relativistic electron loss by whistler-mode wave scattering, J. Geophys. Res.: Space Phys., 2021, vol. 126, no. 11, p. e2021JA029851. https://doi.org/10.1029/2021JA029851

  5. Bespalov, P.A. and Trakhtengerts, V.Yu., Al’fvenovskie mazery (Alfvén Masers), Gor’kii: IPF AN SSSR, 1986.

  6. Demekhov, A.G., Trakhtengerts, V.Yu., Rycroft, M.J., and Nunn, D., Electron acceleration in the magnetosphere by whistler-mode waves of varying frequency, Geomagn. Aeron. (Engl. Transl.), 2006, vol. 46, no. 6, pp. 711–716.

  7. Frolov, V.L., Rapoport, V.O., Shorokhova, E.A., Belov, A.S., Parrot, M., and Rauch, J.-L., Features of the electromagnetic and plasma disturbances induced at the altitudes of the Earth’s outer ionosphere by modification of the ionospheric F2 region using high-power radio waves radiated by the SURA heating facility, Radiophys. Quantum Electron., 2016, vol. 59, no. 3, pp. 177–198.

    Article  Google Scholar 

  8. Inan, U.S., Bell, T.F., Bortnik, J., and Albert, J.M., Controlled precipitation of radiation belt electrons, J. Geophys. Res., 2003, vol. 108, no. A5, p. 1186. https://doi.org/10.1029/2002JA009580

    Article  Google Scholar 

  9. Kennel, C.F. and Engelmann, F., Velocity space diffusion from weak plasma turbulence in a magnetic field, Phys. Fluids, 1966, vol. 9, no. 12, pp. 2377–2388. https://doi.org/10.1063/1.1761629

    Article  CAS  Google Scholar 

  10. Kovrazhkin, R.A., Mogilevskii, M.M., Boske, Zh.M., et al., Observation of particle precipitation from the ring-current zone stimulated by a powerful ground-based VLF transmitter, JETP Lett., 1983, vol. 38, no. 7, pp. 397–400.

    Google Scholar 

  11. Lyons, L.R., Pitch angle and energy diffusion coefficients from resonant interactions with ion-cyclotron and whistler waves, J. Plasma Phys., 1974, vol. 12, pp. 417–432, vol. 12, no. 3, pp. 417–432.

  12. Miyoshi, Y., Saito, S., Kurita, S., et al., Relativistic electron microbursts as high-energy tail of pulsating aurora electrons, Geophys. Res. Lett., 2020, vol. 47, no. 21, p. e90360. https://doi.org/10.1029/2020GL090360

    Article  Google Scholar 

  13. Moldwin, M.B., Downward, L., Rassoul, H.K., Amin, R., and Anderson, R.R., A new model of the location of the plasmapause: CRRES results, J. Geophys. Res., 2002, vol. 107, no. A11, p. 1339. https://doi.org/10.1029/2001JA009211

    Article  Google Scholar 

  14. Mourenas, D., Artemyev, A.V., Ripoll, J.-F., Agapitov, O.V., and Krasnoselskikh, V.V., Timescales for electron quasi-linear diffusion by parallel and oblique lower-band chorus waves, J. Geophys. Res., 2012, vol. 117, no. A6, p. A06234. https://doi.org/10.1029/2012JA017717

    Article  CAS  Google Scholar 

  15. Parrot, M., Němec, F., Cohen, M.B., and Golkowski, M., On the use of ELF/VLF emissions triggered by HAARP to simulate PLHR and to study associated MLR events, Earth, Planets Space, 2022, vol. 74, no. 1, p. 4. https://doi.org/10.1186/s40623-021-01551-9

    Article  Google Scholar 

  16. Pasmanik, D.L. and Demekhov, A.G., Peculiarities of VLF wave propagation in the Earth’s magnetosphere in the presence of artificial large-scale inhomogeneity, J. Geophys. Res.: Space Phys., 2017, vol. 122, no. 7. https://doi.org/10.1002/2017JA024118

  17. Rapoport, V.O., Frolov, V.L., Polyakov, S.V., Komrakov, G.P., Ryzhov, N.A., Markov, G.A., Belov, A.S., Parrot, M., and Rauch, J.-L., VLF electromagnetic field structures in ionosphere disturbed by Sura RF heating facility, J. Geophys. Res., 2010, vol. 115, no. 10, p. A10322. https://doi.org/10.1029/2010JA015484

    Article  Google Scholar 

  18. Santolik, O., Macúšová, E., Kolmašová, I., Cornilleau-Wehrlin, N., and de Conchy, Y., Propagation of lower-band whistler-mode waves in the outer Van Allen belt: Systematic analysis of 11 years of multi-component data from the cluster spacecraft, Geophys. Res. Lett., 2014, vol. 41, no. 8, pp. 2729–2737. https://doi.org/10.1002/2014GL059815

    Article  Google Scholar 

  19. Sauvaud, J.-A., Maggiolo, R., Jacquey, C., Parrot, M., Berthelier, J.-J., Gamble, R.J., and Rodger, C.J., Radiation belt electron precipitation due to VLF transmitters: Satellite observations, Geophys. Res. Lett., 2008, vol. 35, no. 9, p. L09101. https://doi.org/10.1029/2008GL033194

    Article  Google Scholar 

  20. Sheeley, B.W., Moldwin, M.B., Rassoul, H.K., and Anderson, R.R., An empirical plasmasphere and trough density model: CRRES observations, J. Geophys. Res., 2001, vol. 106, no. A11, pp. 25 631–25 641. https://doi.org/10.1029/2000JA000286

    Article  Google Scholar 

  21. Steinacker, J. and Miller, J.A., Stochastic gyroresonant electron acceleration in a low-beta plasma. I. Interaction with parallel transverse cold plasma waves, Astrophys. J., 1992, vol. 393, pp. 764–781.

    Article  Google Scholar 

  22. Stubbe, P., Review of ionospheric modification experiments at Tromsø, J. Atmos. Terr. Phys., 1996, vol. 58, nos. 1–4, pp. 349–368. https://doi.org/10.1016/0021-9169(95)00041

    Article  Google Scholar 

  23. Titova, E.E., Demekhov, A.G., Mochalov, A.A., Gvozdevskii, B.B., and Mogilevsky, M.M., and Parrot, M., ELF/VLF perturbations above the HAARP transmitter recorded by the Demeter satellite in the upper ionosphere, Radiophys. Quantum Electron., 2015, vol. 58, no. 3, pp. 155–172.

    Article  Google Scholar 

  24. Trakhtengerts, V.Yu. and Rycroft, M.J., Whistler and Alfvén Cyclotron Masers in the Space, Cambridge: Cambridge University Press, 2008.

    Book  Google Scholar 

  25. Trakhtengerts, V.Y., Rycroft, M.J., Nunn, D., and Demekhov, A.G., Cyclotron acceleration of radiation belt electrons by whistlers, J. Geophys. Res., 2003, vol. 108, no. A3, p. 1138. https://doi.org/10.1029/2002JA009559

    Article  Google Scholar 

  26. Vas’kov, V.V., Bud’ko, N.I., Kapustina, O.V., Mikhailov, Y.M., Ryabova, N.A., Gdalevich, G.L., Komrakov, G.P., and Maresov, A.N., Detection on the INTERCOSMOS-24 satellite of VLF and ELF waves stimulated in the topside ionosphere by the heating facility SURA, J. Atmos. Sol.-Terr. Phys., 1998, vol. 60, no. 12, pp. 1261–1274. https://doi.org/10.1016/S1364-6826(98)00054-6

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

I am grateful to M.E. Gushchin for stimulating discussions and to the reviewers, for valuable comments.

Funding

This study was supported by the Russian Science Foundation, project no. 21-12-00385.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Demekhov.

Ethics declarations

The author of this work declares that he has no conflicts of interest.

Additional information

Translated by O. Pismenov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demekhov, A.G. Pitch-Angle Diffusion of Radiation Belt Electrons and Precipitating Particle Fluxes: Dependence on VLF Wavefield Parameters. Geomagn. Aeron. 64, 264–271 (2024). https://doi.org/10.1134/S0016793223601114

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793223601114

Navigation